Math, asked by devi95, 9 months ago

Find zeros of polynomial 2x^2-3x+1 and verify the relationship between coefficients and zeros of polynomial​

Answers

Answered by Anonymous
36

\sf\red{\underline{\underline{Answer:}}}

\sf{Zeroes \ of \ the \ polynomial \ are \ 1 \ and \ \frac{1}{2}}

\sf\orange{Given:}

\sf{The \ given \ quadratic \ polynomial \ is}

\sf{\implies{2x^{2}-3x+1}}

\sf\pink{To \ find:}

\sf{Zeroes \ of \ the \ polynomial. }

\sf\green{\underline{\underline{Solution:}}}

\sf{The \ given \ quadratic \ polynomial \ is}

\sf{\implies{2x^{2}-3x+1}}

\sf{\implies{2x^{2}-2x-x+1}}

\sf{\implies{2x(x-1)-1(x-1)}}

\sf{\implies{(x-1)(2x-1)}}

\sf{\implies{\therefore{x=1 \ or \ \frac{1}{2}}}}

\sf{Zeroes \ of \ the \ polynomial \ are \ 1 \ and \ \frac{1}{2}}

_______________________________________

\blue{\underline{\underline{Verification:}}}

\sf{The \ given \ quadratic \ polynomial \ is}

\sf{\implies{2x^{2}-3x+1}}

\sf{Here, \ a=2, b=-3 \ and \ c=1}

\sf{Let \ \alpha \ be \ 1 \ and \ \beta \ be \ \frac{1}{2}}

_________________________

\sf{\alpha+\beta=1+\frac{1}{2}}

\sf{\therefore{\alpha+\beta=\frac{3}{2}...(1)}}

\sf{\frac{-b}{a}=\frac{-(-3)}{2}}

\sf{\therefore{\frac{-b}{a}=\frac{3}{2}...(2)}}

\sf{...from \ (1) \ and \ (2)}

\sf{Sum \ of \ zeroes=\frac{-b}{a}}

_________________________

\sf{\alpha\beta=1\times\frac{1}{2}}

\sf{\therefore{\alpha\beta=\frac{1}{2}...(3)}}

\sf{\frac{c}{a}=\frac{1}{2}...(4)}

\sf{...from \ (3) \ and \ (4)}

\sf{Product \ of \ zeroes=\frac{c}{a}}

\sf{Hence, \ verified. }

Answered by Anonymous
28

 \large\bf\underline \orange{Given:-}

  • p(x) = 2x² - 3x +1

 \large\bf\underline \orange{To \: find:-}

  • zeroes of polynomial

  • relationship between the zeroes and coefficients.

 \huge\bf\underline \green{Solution:-}

  • p(x) = 2x² - 3x +1

: \implies   \rm\: {2x}^{2}  - 3x + 1 \\  \\ : \implies   \rm\: 2 {x}^{2}  - 2x - x + 1 \\  \\ : \implies   \rm\:2x(x - 1) - 1(x - 1) \\  \\ : \implies   \rm\:(2x - 1)(x - 1) \\  \\ : \implies   \bf\:x =  \frac{1}{2}  \:  \: or \:  \: x = 1

  • Let α be 1/2
  • and β be 1

p(x) = 2x² - 3x +1

  • a = 2
  • b = -3
  • c = 1

 \bf \underline{Verification:-}

: \bigstar   \bf\: \alpha  +  \beta  =  \frac{ - b}{a}  \\  \\ : \implies   \rm\: \frac{1}{2}  + 1 =  \frac{ - ( -3 )}{2}  \\  \\ : \implies   \rm\: \frac{1 + 2}{2}  =  \frac{3}{2}  \\  \\ : \implies   \rm\: \frac{3}{2}  =  \frac{3}{2}

: \bigstar  \bf\: \alpha  \beta  =  \frac{c}{a}  \\  \\ : \implies   \rm\: \frac{1}{2}  \times 1 =  \frac{1}{2}  \\  \\ : \implies   \rm\: \frac{1}{2}  =  \frac{1}{2}

So, LHS = RHS

hence, relationship between the zeroes and coefficients is Verified.

Similar questions