Math, asked by XxRajatPawarxX, 2 months ago

Find zeros of the following quadratic polynomial and verify the relationship between the zeros and its coefficients.

 \mathtt{f(x) =  {6x}^{2} - 3 - 7x }

Answers

Answered by Anonymous
18

Answer:

 \huge\mathtt\blue{SOLUTION:-}

\mathtt{f(x) = {6x}^{2} - 3 - 7x }

\mathtt{ {6x}^{2} - 3 - 7x = 0 }

\mathtt{ {6x}^{2} - 7x - 3 = 0 }

\mathtt{ {6x}^{2}  - 9x + 2x - 3 = 0}

\mathtt{ {6x}^{2} + 2x - 9x - 3 = 0 }

\mathtt{2x(3x + 1)  - 3(3x + 1) = 0}

\mathtt{(3x + 1) - (2x - 3) = 0}

\mathtt{3x + 1 = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 2x - 3 = 0}

\mathtt{3x =  - 1  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  2x = 3}

\mathtt{x =  \frac{ - 1}{3}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  x =  \frac{3}{2} }

 \mathtt{ \alpha  =  \frac{3}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: \beta  =  \frac{ - 1}{3} }

 \mathtt \blue{a = 6 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: b =  - 7 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  c =  - 3}

\mathtt{SUM  \: OF \:  ZEROS}

\mathtt \blue{ \alpha  +  \beta  =  \frac{ - b}{a} }

\mathtt \blue{ \alpha  +  \beta  =  \frac{ - 7}{6} }

\mathtt \blue{  \frac{3}{2}  +  \frac{( - 1)}{3}  =  \frac{ - ( - 7)}{6} }

\mathtt \blue{ \frac{9 - 2}{6} =  \frac{7}{6}  }

\mathtt \blue{ \frac{7}{6} =  \frac{7}{6}  }

\mathtt{LHS=RHS}

\mathtt{PRODUCT \:  OF  \: ZEROS}

\mathtt \blue{ \alpha  \beta  =  \frac{c}{a} }

\mathtt \blue{ \frac{3}{2} \times  \frac{( - 1)}{3}  =  \frac{ - 3}{6}  }

\mathtt \blue{  \frac{ - 3}{6} =  \frac{ - 3}{6}  }

\mathtt{LHS=RHS}

Answered by ITzUnknown100
4

Answer:

Mood off he aur kuch niy...

heart broken bhna!!!(╯︵╰,)

boht dukh hota he....

me bad me baat karunga okay

Similar questions