finding AP 52 term of an ap is 29 and the 15 term of an ap is a 79 and find 55 term
Answers
for ap tn formula is
Tn=a+(n-1)d
from first condition,
29=a+51d
And from second condition
79=a+14d
on solving both equation we get,
a=2579÷37 and d=-50÷37
now,
T55 term will be
T55=2579÷37+54×50÷37
=142.6756
Answer:
- 55th term is 25.01.
Step-by-step explanation:
Given:
- a₅₂ = 29
- a₁₅ = 79
To Find:
- a₅₅
Now, we know that,
⇒ a₅₂ = a + 51d
⇒ 29 = a + 51 d .........(1)
And,
⇒ a₁₅ = a + 14d
⇒ 79 = a + 14d ........(2)
Now, we will solve this equation by substitution method,
⇒ a + 51d = 29
⇒ a = 29 - 51d
Now put the value of 'a' in equation (2),
⇒ a + 14d = 79
⇒ 29 - 51d + 14d = 79
⇒ 29 - 37d = 79
⇒ -37d = 79 - 29
⇒ -37d = 50
⇒ d = 50/-37
⇒ d = - 1.35
Now, put the value of d in equation (1),
⇒ a + 51d = 29
⇒ a + 51(- 1.35) = 29
⇒ a - 68.91 = 29
⇒ a = 29 + 68.91
⇒ a = 97.91
Now, we will find 55th term,
⇒ aₙ = a + (n - 1)d
⇒ a₅₅ = 97.91 + (55 - 1)-1.35
⇒ a₅₅ = 97.91 - 74.25 + 1.35
⇒ a₅₅ = 97.91 - 72.9
⇒ a₅₅ = 25.01
Hence, 55th term is 25.01.
Now we will calculate A.P,
⇒ a₁ = 97.91
⇒ a₂ = 97.91 + (-1.35) = 96.56
⇒ a₃ = 97.91 + 2(-1.35) = 95.21
Hence, A.P is 97.91, 96.56, 95.21...............