FINDING THE MISSING FACTOR
1. 168p⁴q⁶r² = (_____) (-14p²q)
2. 12y⁴z² = (_____) (4y)
3. 72y⁵z⁶ = (2z³) (_____) (3yz)
Answers
Answer:
Problem:
|Find the missing Factor.
1. 168p⁴q⁶r²=(___) (-14p² q)
2. 12y⁴z² = (___) (4y)
3. 72y⁵z⁶ = (2z³) (___) (3yz)
Solution:
1. 168p⁴q⁶r²=(___) (-14p² q)
\begin{gathered}168p⁴q⁶r²=(?)(-14p² q) \\ \frac{168p {}^{4}q {}^{6} r {}^{2} }{ - 14p {}^{2}q } \\ - 12p {}^{4 - 2} q {}^{6 - 1} r {}^{2} \\ \boxed {\large{ - 12p {}^{2}q {}^{5} r {}^{2} }}\end{gathered}
168p⁴q⁶r²=(?)(−14p²q)
−14p
2
q
168p
4
q
6
r
2
−12p
4−2
q
6−1
r
2
−12p
2
q
5
r
2
2. 12y⁴z² = (___) (4y)
\begin{gathered}2. \: 12y⁴z² = ( ? ) (4y) \\ \frac{12y {}^{4} z {}^{2} }{4y} \\ 3y {}^{4 - 1} z {}^{2} \\ \boxed {\large{3y {}^{3}z {}^{2} }}\end{gathered}
2.12y⁴z²=(?)(4y)
4y
12y
4
z
2
3y
4−1
z
2
3y
3
z
2
3. 72y⁵z⁶ = (2z³) (___) (3yz)
\begin{gathered}72y⁵z⁶ = (2z³) ( ? ) (3yz) \\ 72y {}^{5} z {}^{6} = (?)(6yz {}^{4} ) \\ \frac{72y {}^{5} z {}^{6} }{6yz {}^{4} } \\ 12y {}^{5 - 1} z {}^{6 - 4} \\ \boxed{ \large{12y {}^{4} z {}^{2} }}\end{gathered}
72y⁵z⁶=(2z³)(?)(3yz)
72y
5
z
6
=(?)(6yz
4
)
6yz
4
72y
5
z
6
12y
5−1
z
6−4
12y
4
z
2