Math, asked by rdeepmaan143, 2 months ago

fine the area of sector of a circle with ratios 6 cm if angle of the sector is 90 °​

Answers

Answered by prajapatikausha53
0

Answer:

Find the area of a sector of a circle with radius 6cm if angle of the sector is 60

o

.

Hard

share

Share

Answer

Area of sector=

360

o

θ

×πr

2

where θ=60

o

r=6cm

360

o

60

o

×π×6×6=

6

1

×

7

22

×36=

7

22

×6

=

7

132

cm

2

.

solution

Answered by abhilabh20
2

Answer:

Given, radius, r=20 cm, central angle, θ=90

Given, radius, r=20 cm, central angle, θ=90 o

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector =

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 =

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o ×3.14×20×20

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o ×3.14×20×20 =

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o ×3.14×20×20 = 4

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o ×3.14×20×20 = 41

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o ×3.14×20×20 = 41

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o ×3.14×20×20 = 41 ×

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o ×3.14×20×20 = 41 × 100

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o ×3.14×20×20 = 41 × 100314

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o ×3.14×20×20 = 41 × 100314

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o ×3.14×20×20 = 41 × 100314 ×20×20

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o ×3.14×20×20 = 41 × 100314 ×20×20 =314

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o ×3.14×20×20 = 41 × 100314 ×20×20 =314∴ the area of sector is 314 cm

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o ×3.14×20×20 = 41 × 100314 ×20×20 =314∴ the area of sector is 314 cm 2

Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o ×3.14×20×20 = 41 × 100314 ×20×20 =314∴ the area of sector is 314 cm 2 .

Similar questions