fine the area of sector of a circle with ratios 6 cm if angle of the sector is 90 °
Answers
Answer:
Find the area of a sector of a circle with radius 6cm if angle of the sector is 60
o
.
Hard
share
Share
Answer
Area of sector=
360
o
θ
×πr
2
where θ=60
o
r=6cm
⇒
360
o
60
o
×π×6×6=
6
1
×
7
22
×36=
7
22
×6
=
7
132
cm
2
.
solution
Answer:
Given, radius, r=20 cm, central angle, θ=90
Given, radius, r=20 cm, central angle, θ=90 o
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector =
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 =
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o ×3.14×20×20
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o ×3.14×20×20 =
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o ×3.14×20×20 = 4
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o ×3.14×20×20 = 41
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o ×3.14×20×20 = 41
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o ×3.14×20×20 = 41 ×
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o ×3.14×20×20 = 41 × 100
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o ×3.14×20×20 = 41 × 100314
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o ×3.14×20×20 = 41 × 100314
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o ×3.14×20×20 = 41 × 100314 ×20×20
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o ×3.14×20×20 = 41 × 100314 ×20×20 =314
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o ×3.14×20×20 = 41 × 100314 ×20×20 =314∴ the area of sector is 314 cm
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o ×3.14×20×20 = 41 × 100314 ×20×20 =314∴ the area of sector is 314 cm 2
Given, radius, r=20 cm, central angle, θ=90 o , π=3.14Area of sector = 360 o θ ×πr 2 = 360 o 90 o ×3.14×20×20 = 41 × 100314 ×20×20 =314∴ the area of sector is 314 cm 2 .