Math, asked by deepak1281, 4 months ago

Fine the derivative of
y = 4x - 8 \div 3x + 11 \\ y =  {x}^{2}  \div  {x}^{3}  + 1 \\ y = 1 +  {x}^{2}  - x  \div 1 -  {x}^{2}  + x

Answers

Answered by arin04sharma
1
  • ANSWER IS GIVEN AT END IN EACH PART.
  • EACH STEP IS EXPLAINED CAREFULLY !

Step-by-step explanation:

(i) y= \frac{4x-8}{3x+11}

Now, \frac{dy}{dx} = \frac{(4x-8)'.(3x+11) - (3x+11)'.(4x-8)}{(3x+11)^{2}} (by applying dividing rule)

\frac{dy}{dx}= \frac{4(3x+11) - 3(4x-8)}{(3x+11)^{2} }

\frac{dy}{dx}= \frac{12x+44-12x+24}{(3x+11)^{2} }

\frac{dy}{dx}= \frac{64}{(3x+11)^{2} }(∵ Both 12x will cancel eachother)

Hence, this is the answer.

(ii)y=\frac{x^{2} }{x^{3}+1 }

Now,\frac{dy}{dx}=\frac{(x^{2} )'.(x^{3}+1)-x^{2}.(x^{3} +1)'}{(x^{3}+1) ^{2} }(by applying dividing rule)

\frac{dy}{dx}=\frac{2x.(x^{3}+1  )-x^{2} .(3x^{2} )}{(x^{3}+1) ^{2} }

\frac{dy}{dx}=\frac{2x^{4}+2x-3x^{4}  }{(x^{3}+1) ^{2} }

\frac{dy}{dx}=\frac{-x^{4} +2x}{(x^{3}+1) ^{2} }

Hence, this is the answer.

(iii)y= \frac{1+x^{2} -x}{1-x^{2} +x}

Now, \frac{dy}{dx} =\frac{(1+x^{2} -x)'.(1-x^{2} +x)-(1+x^{2} -x).(1-x^{2} +x)'}{(1-x^{2} +x)^{2} }(by applying dividing rule)

\frac{dy}{dx} =\frac{2x-1.(1-x^{2} +x)-(1+x^{2} -x).(-2x+1)}{(1-x^{2} +x)^{2} }

\frac{dy}{dx} =\frac{2x-2x^{3}+2x^{2} -1+x^{2} -x-[-2x+1-2x^{3}+x^{2} +2x^{2} -x]  }{(1-x^{2} +x)^{2} }

\frac{dy}{dx} =\frac{x-2x^{3}+3x^{2} -1-[-3x+1-2x^{3}+3x^{2}]   }{(1-x^{2} +x)^{2} }

\frac{dy}{dx} =\frac{x-2x^{3}+3x^{2} -1+3x-1+2x^{3}-3x^{2}   }{(1-x^{2} +x)^{2} }

\frac{dy}{dx} =\frac{4x-2}{(1-x^{2} +x)^{2} } (∵ both 2x^{3} and 3x^{2} will cancel out eachother)

Hence, this is the answer.

MARK ME AS BRAINLIEST... ;)

Similar questions