Math, asked by pshubh55, 2 months ago

finf valve of this sum​

Attachments:

Answers

Answered by Asterinn
10

 \rm \longrightarrow \sqrt{ \dfrac{1 + sin \theta}{1  -  sin \theta}   }

 \rm \longrightarrow \sqrt{ \dfrac{1 + sin \theta}{1  -  sin \theta} \times\dfrac{1   +  sin \theta}{1   +   sin \theta}  }

 \rm \longrightarrow \sqrt{ \dfrac{ {(1 + sin \theta)}^{2} }{1  -   {sin}^{2}  \theta}   }

\rm \longrightarrow \sqrt{ \dfrac{ {(1 + sin \theta)}^{2} }{  {cos}^{2}  \theta}   }

\rm \longrightarrow { \dfrac{ {1 + sin \theta}}{  {cos} \theta}   }

\rm \longrightarrow { \dfrac{ {1 }}{  {cos} \theta}   }  + { \dfrac{ { sin \theta}}{  {cos} \theta}   }

\rm \longrightarrow {{sec \: \theta}   }  + {{tan \:  \theta}   }

Therefore, option (A) is correct.

Additional Information :-

\sf Trigonometric\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm  \infty  \\ \\ \rm cosec A & \rm  \infty  & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm  \infty  \\ \\ \rm cot A & \rm  \infty  & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}

Answered by Ranveerx107
2

 \rm \longrightarrow \sqrt{ \dfrac{1 + sin \theta}{1  -  sin \theta}   }

 \rm \longrightarrow \sqrt{ \dfrac{1 + sin \theta}{1  -  sin \theta} \times\dfrac{1   +  sin \theta}{1   +   sin \theta}  }

 \rm \longrightarrow \sqrt{ \dfrac{ {(1 + sin \theta)}^{2} }{1  -   {sin}^{2}  \theta}   }

\rm \longrightarrow \sqrt{ \dfrac{ {(1 + sin \theta)}^{2} }{  {cos}^{2}  \theta}   }

\rm \longrightarrow { \dfrac{ {1 + sin \theta}}{  {cos} \theta}   }

\rm \longrightarrow { \dfrac{ {1 }}{  {cos} \theta}   }  + { \dfrac{ { sin \theta}}{  {cos} \theta}   }

\rm \longrightarrow {{sec \: \theta}   }  + {{tan \:  \theta}   }

  • Therefore, option (A) is correct.

Similar questions