Math, asked by soneprince719, 4 months ago

Fint the value of theta in each of the following
Root3 tan 2theta - 3 = 0​

Answers

Answered by 4rajashekar4
1

Answer:

√3 tan2theta=3

tan2 theta=3/√3

tan2 theta=1/√3

tan2 theta=tan 30°

2theta=30°

theta=15°

Step-by-step explanation:

hope it helps you!!

Answered by anjalimaurya3876
1

\mathrm{\bold{I \:hope\: it \:helps\: you}}

\mathrm{\bold{please\: mark\:it\:as\: brainliest}}

\sqrt{3} tan2θ - 3 = 0

\sqrt{3} tan2θ = 0 + 3

\sqrt{3} tan2θ = 3

∴tan2θ = \frac{3}{\sqrt{3}}

Now,

Multiply \frac{3}{\sqrt{3}} by its conjugate term,

\bold{=} \frac{3}{\sqrt{3}} \mathrm{\bold{\mathrm{×}}} \frac{\sqrt{3}}{\sqrt{3}}

\bold{=} \frac{{3}\sqrt{3}}{{\sqrt{3}}× {\sqrt{3}}}

\bold{=} \frac{{3}\sqrt{3}}{3}

\bold{=} \frac{\sqrt{3}}{1}

\bold{=} \sqrt{3}

\bold{Now,}

∴tan2θ = \sqrt{3}

∴tan2θ = tan60....(∵ tan60°= \sqrt{3} )

∴tanθ = \frac{tan60}{2}

∴tanθ = tan30

∴θ = 30°

\color{red}{\bold{Ans.}} \mathrm{\bold{The\: value\: of \:θ\: is \:30°.}}

Similar questions