Math, asked by akashsingh7323881818, 1 year ago

First the 31st term of an AP whose 11th term is 38 and the 16th term is 73.​

Answers

Answered by simi76503
6

Answer:

Hope it helps you

Please mark it as brainliest

Attachments:
Answered by ShírIey
73

AnswEr:

\bold{\underline{\sf{\pink{\;\;Given\;\;}}}}

:\implies\sf\; a11 = a + 10d = 38 ___eq(1)

:\implies\sf\; a16= a + 15d = 73 ____eq(2)

\dag\bold{\underline{\sf{Now\; Subtracting\;(1)\; from\;(2)}}}

:\implies\sf\;5d = 35

:\implies\sf\; d = \dfrac{35}{5}

:\implies\large{\underline{\boxed{\sf{\red{d = 7}}}}}

\bold{\underline{\sf{Putting\; the\;value\;of\;d\;in\;eq(1)}}}

:\implies\sf\;a = 10 \times\;7 = 38

:\implies\sf\;a = 38 - 70

:\implies\large{\underline{\boxed{\sf{\red{a = - 32}}}}}

\rule{150}3

\dag\bold{\underline{\sf{We\; Know\; that}}}

\bigstar\large\boxed{\sf{\pink{an = a + (n -1)d}}}

:\implies\sf\;a + (31 - 1)d

:\implies\sf\; -32 + 30\times 7

:\implies\sf\;- 32 + 210

:\implies\large{\underline{\boxed{\sf{\pink{a31= 178}}}}}

\bold{\underline{\sf{\green{31st\; term\; of \; the\; AP\; is \; 178}}}}

\rule{150}3

Similar questions