five characteristic of plant cell and animal cell
Answers
Answered by
2
Cell Differences
Recommend this on FacebookShare on TumblrShare on Twitter
Plant Cells

Figure %: Generalized Plant Cell
Structurally, plant and animal cells are very similar because they are both eukaryotic cells. They both contain membrane-bound organelles such as the nucleus, mitochondria, endoplasmic reticulum, golgi apparatus, lysosomes, and peroxisomes. Both also contain similar membranes, cytosol, and cytoskeletal elements. The functions of these organelles are extremely similar between the two classes of cells (peroxisomes perform additional complex functions in plant cells having to do with cellular respiration). However, the few differences that exist between plant and animals are very significant and reflect a difference in the functions of each cell.
Plant cells can be larger than animal cells. The normal range for an animal cell varies from 10 to 30 micrometers while that for a plant cell stretches from 10 to 100 micrometers. Beyond size, the main structural differences between plant and animal cells lie in a few additional structures found in plant cells. These structures include: chloroplasts, the cell wall, and vacuoles.Plant Cells

Figure %: Generalized Plant Cell
Structurally, plant and animal cells are very similar because they are both eukaryotic cells. They both contain membrane-bound organelles such as the nucleus, mitochondria, endoplasmic reticulum, golgi apparatus, lysosomes, and peroxisomes. Both also contain similar membranes, cytosol, and cytoskeletal elements. The functions of these organelles are extremely similar between the two classes of cells (peroxisomes perform additional complex functions in plant cells having to do with cellular respiration). However, the few differences that exist between plant and animals are very significant and reflect a difference in the functions of each cell.
Plant cells can be larger than animal cells. The normal range for an animal cell varies from 10 to 30 micrometers while that for a plant cell stretches from 10 to 100 micrometers. Beyond size, the main structural differences between plant and animal cells lie in a few additional structures found in plant cells. These structures include: chloroplasts, the cell wall, and vacuoles.

Figure %: Plant Cell v. Animal Cell
Chloroplasts
In animal cells, the mitochondria produces the majority of the cells energy from food. It does not have the same function in plant cells. Plant cells use sunlight as their energy source; the sunlight must be converted into energy inside the cell in a process called photosynthesis. Chloroplasts are the structures that perform this function. They are rather large, double membrane-bound structures (about 5 micrometers across) that contain the substance chlorophyll, which absorbs sunlight. Additional membranes within the chloroplast contain the structures that actually carry out photosynthesis.
Chloroplasts carry out energy conversion through a complex set of reactions similar to those performed by mitochondria in animals. The double membrane structure of chloroplasts is also reminiscent of mitochondria. The inner membrane encloses an area called the stoma, which is analogous to the matrix in mitochondria and houses DNA, RNA, ribosomes, and different enzymes. Chloroplasts, however, contain a third membrane and are generally larger than mitochondria.
The Cell Wall
Another structural difference between in plant cells is the presence of a rigid cell wall surrounding the cell membrane. This wall can range from 0.1 to 10 micrometers thick and is composed of fats and sugars. The tough wall gives added stability and protection to the plant cell.
Vacuoles
Vacuoles are large, liquid-filled organelles found only in plant cells. Vacuoles can occupy up to 90% of a cell's volume and have a single membrane. Their main function is as a space-filler in the cell, but they can also fill digestive functions similar to lysosomes (which are also present in plant cells). Vacuoles contain a number of enzymes that perform diverse functions, and their interiors can be used as storage for nutrients or, as mentioned, provide a place to degrade unwanted substances.
Recommend this on FacebookShare on TumblrShare on Twitter
Plant Cells

Figure %: Generalized Plant Cell
Structurally, plant and animal cells are very similar because they are both eukaryotic cells. They both contain membrane-bound organelles such as the nucleus, mitochondria, endoplasmic reticulum, golgi apparatus, lysosomes, and peroxisomes. Both also contain similar membranes, cytosol, and cytoskeletal elements. The functions of these organelles are extremely similar between the two classes of cells (peroxisomes perform additional complex functions in plant cells having to do with cellular respiration). However, the few differences that exist between plant and animals are very significant and reflect a difference in the functions of each cell.
Plant cells can be larger than animal cells. The normal range for an animal cell varies from 10 to 30 micrometers while that for a plant cell stretches from 10 to 100 micrometers. Beyond size, the main structural differences between plant and animal cells lie in a few additional structures found in plant cells. These structures include: chloroplasts, the cell wall, and vacuoles.Plant Cells

Figure %: Generalized Plant Cell
Structurally, plant and animal cells are very similar because they are both eukaryotic cells. They both contain membrane-bound organelles such as the nucleus, mitochondria, endoplasmic reticulum, golgi apparatus, lysosomes, and peroxisomes. Both also contain similar membranes, cytosol, and cytoskeletal elements. The functions of these organelles are extremely similar between the two classes of cells (peroxisomes perform additional complex functions in plant cells having to do with cellular respiration). However, the few differences that exist between plant and animals are very significant and reflect a difference in the functions of each cell.
Plant cells can be larger than animal cells. The normal range for an animal cell varies from 10 to 30 micrometers while that for a plant cell stretches from 10 to 100 micrometers. Beyond size, the main structural differences between plant and animal cells lie in a few additional structures found in plant cells. These structures include: chloroplasts, the cell wall, and vacuoles.

Figure %: Plant Cell v. Animal Cell
Chloroplasts
In animal cells, the mitochondria produces the majority of the cells energy from food. It does not have the same function in plant cells. Plant cells use sunlight as their energy source; the sunlight must be converted into energy inside the cell in a process called photosynthesis. Chloroplasts are the structures that perform this function. They are rather large, double membrane-bound structures (about 5 micrometers across) that contain the substance chlorophyll, which absorbs sunlight. Additional membranes within the chloroplast contain the structures that actually carry out photosynthesis.
Chloroplasts carry out energy conversion through a complex set of reactions similar to those performed by mitochondria in animals. The double membrane structure of chloroplasts is also reminiscent of mitochondria. The inner membrane encloses an area called the stoma, which is analogous to the matrix in mitochondria and houses DNA, RNA, ribosomes, and different enzymes. Chloroplasts, however, contain a third membrane and are generally larger than mitochondria.
The Cell Wall
Another structural difference between in plant cells is the presence of a rigid cell wall surrounding the cell membrane. This wall can range from 0.1 to 10 micrometers thick and is composed of fats and sugars. The tough wall gives added stability and protection to the plant cell.
Vacuoles
Vacuoles are large, liquid-filled organelles found only in plant cells. Vacuoles can occupy up to 90% of a cell's volume and have a single membrane. Their main function is as a space-filler in the cell, but they can also fill digestive functions similar to lysosomes (which are also present in plant cells). Vacuoles contain a number of enzymes that perform diverse functions, and their interiors can be used as storage for nutrients or, as mentioned, provide a place to degrade unwanted substances.
Similar questions