Math, asked by honeykaushal0000, 11 months ago

Five square flower beds each of sides 1.4 m are dug on a piece of land 14m long and 16m wide. What is the area of the remaining part of land

Answers

Answered by 222helo
1

Answer:

126m^2

Hope this helps!

Attachments:
Answered by Anonymous
3

❏ Question:-

Five square flower beds each of sides 1.4 m are dug on a piece of land 14m long and 16m wide. What is the area of the remaining part of land

❏ Solution:-

➔Given :-

  • side of each square = 1.4 m.
  • length of the land =14 m .
  • width of the land = 16 m.

Explanation :-

➝ Area of each square shaped flower bed,

\sf\implies A_{bed}= 1.4^2 \:m^2

\sf\implies A_{bed}= 1.96 \:m^2

Now , Area of such 5 beds is ,

\sf\implies A_{5\:beds}= 5\times1.96 \:m^2

\sf\implies A_{5\:beds}= 9.80 \:m^2

➝ Area of the Land ,

\sf\implies A_{Land}= 14\times16 \:m^2

\sf\implies A_{Land}=224 \:m^2

∴ Area of Remaining portion

= (224-9.80) m²

= 213.20 m²

\setlength{\unitlength}{0.8cm}\begin{picture}(10,5)\thicklines\qbezier(1,1)(1,1)(9,1)\end{picture}

\setlength{\unitlength}{0.8cm}\begin{picture}(10,5)\thicklines\qbezier(1,1)(1,1)(9,1)\end{picture}

❏ Formula Used:-

✦RECTANGLE✦

For a rectangle of length l and breadth b,

\sf\longrightarrow \boxed{Area=length\times breadth}

\sf\longrightarrow \boxed{Perimeter=2\times(length+Breadth)}

\sf\longrightarrow \boxed{Diagonal=\sqrt{length{}^{2}+Breadth{}^{2}}}

✦SQUARE✦

For a square of side a ,

\sf\longrightarrow \boxed{Area=Side{}^{2}}

\sf\longrightarrow \boxed{Perimeter=4\times side}

\sf\longrightarrow \boxed{Diagonal=\sqrt{2}\times side}

\setlength{\unitlength}{0.8cm}\begin{picture}(10,5)\thicklines\qbezier(1,1)(1,1)(9,1)\end{picture}

\setlength{\unitlength}{0.8cm}\begin{picture}(10,5)\thicklines\qbezier(1,1)(1,1)(9,1)\end{picture}

Similar questions