for 0<θ<π/2,if x=∑n=0 to ∞ sin^2nΦ,y=∑n=0 to ∞ cos^2nΦ and z=∑n=0 to ∞ cos^2nΦ sin^2nΦ ,then
Answers
Answered by
1
x=1+sin^2x+sin^4x +sin^6x +,,,........
use now ,
x=1/(1-sin^2x)=sec^2x
in the same way
y=1/(1-cos^2x)=cosec^2x
x+y=sec^2x+cosec^2x
=sec^2x.cosec^2x=xy
z=1+sin^2x.cos^2x +sin^4x.cos^4x +....
z=1/(1-sin^2x.cos^2x)
=1/(1-1/xy)
=xy/(xy-1)
xyz-z=xy
also
x+y+z=xyz
use now ,
x=1/(1-sin^2x)=sec^2x
in the same way
y=1/(1-cos^2x)=cosec^2x
x+y=sec^2x+cosec^2x
=sec^2x.cosec^2x=xy
z=1+sin^2x.cos^2x +sin^4x.cos^4x +....
z=1/(1-sin^2x.cos^2x)
=1/(1-1/xy)
=xy/(xy-1)
xyz-z=xy
also
x+y+z=xyz
Answered by
1
It is not clear whether sin²ⁿ Ф or sin² nФ ...
As 0 <Ф <π/2, 0 < sin² Ф < 1 , 0 < cos² Ф < 1, and also
0 < sin² Ф * cos² Ф < 1
GP: 1 + r + r² + r³ + r⁴ + .... = 1/(1-r) if 0 < r < 1
x = 1 + Sin² Ф + sin⁴ Ф + Sin⁶ Ф + .....∞
= 1 /(1 - Sin² Ф) = Sec² Ф
=> 1/x = Cos² Ф
y = 1 + Cos² Ф + Cos⁴ Ф + Cos⁶ Ф + ... ∞
= 1 /(1 - Cos² Ф) = Cosec² Ф
=> 1/y = Sin² Ф
z = 1 + Cos² Ф Sin² Ф + Cos⁴ Ф Sin⁴ Ф + Cos⁶ Ф Sin⁶ Ф + ... ∞
= 1 / (1 - Cos² Ф Sin² Ф)
= 1 / (1 - 1/xy)
So 1/xy + 1/z = 1 or, z = xy / (xy - 1) or, xy = z /(z-1)
As 0 <Ф <π/2, 0 < sin² Ф < 1 , 0 < cos² Ф < 1, and also
0 < sin² Ф * cos² Ф < 1
GP: 1 + r + r² + r³ + r⁴ + .... = 1/(1-r) if 0 < r < 1
x = 1 + Sin² Ф + sin⁴ Ф + Sin⁶ Ф + .....∞
= 1 /(1 - Sin² Ф) = Sec² Ф
=> 1/x = Cos² Ф
y = 1 + Cos² Ф + Cos⁴ Ф + Cos⁶ Ф + ... ∞
= 1 /(1 - Cos² Ф) = Cosec² Ф
=> 1/y = Sin² Ф
z = 1 + Cos² Ф Sin² Ф + Cos⁴ Ф Sin⁴ Ф + Cos⁶ Ф Sin⁶ Ф + ... ∞
= 1 / (1 - Cos² Ф Sin² Ф)
= 1 / (1 - 1/xy)
So 1/xy + 1/z = 1 or, z = xy / (xy - 1) or, xy = z /(z-1)
kvnmurty:
click on red hearts thanks button box above pls
Similar questions