For a G.P.
i) If a = 1, r = -3/2 find
ii) If
=1023, r = 4, find a.
Answers
Answered by
0
Solution:
Sum of n terms of a G.P. is given by
![S_{n} = \frac{a( {r}^{n} - 1)}{r - 1} \: \: \: r > 1 \\ \\ S_{n} = \frac{a( 1 - {r}^{n} )}{1 - r } \: \: \: r < 1 \\ \\ S_{n} = \frac{a( {r}^{n} - 1)}{r - 1} \: \: \: r > 1 \\ \\ S_{n} = \frac{a( 1 - {r}^{n} )}{1 - r } \: \: \: r < 1 \\ \\](https://tex.z-dn.net/?f=S_%7Bn%7D+%3D+%5Cfrac%7Ba%28+%7Br%7D%5E%7Bn%7D+-+1%29%7D%7Br+-+1%7D+%5C%3A+%5C%3A+%5C%3A+r+%26gt%3B+1+%5C%5C+%5C%5C+S_%7Bn%7D+%3D+%5Cfrac%7Ba%28+1+-+%7Br%7D%5E%7Bn%7D+%29%7D%7B1+-+r+%7D+%5C%3A+%5C%3A+%5C%3A+r+%26lt%3B+1+%5C%5C+%5C%5C)
i) If a = 1, r = -3/2 find
here a= 1
![r= \frac{ - 3}{2} r= \frac{ - 3}{2}](https://tex.z-dn.net/?f=r%3D+%5Cfrac%7B+-+3%7D%7B2%7D+)
Sum of n terms is given by second formula
![S_{n} = \frac{a( 1 - {r}^{n} )}{1 - r } \: \: \: r < 1 \\ \\ S_{5} = \frac{1( 1 - {( \frac{-3}{2})}^{5} )}{1 - \frac{-3}{2} } \: \: \: r < 1 \\ \\ S_{5}= \frac{1(1 - (\frac{-243}{32}) }{\frac{5}{2}} \\ \\ S_{n} = \frac{a( 1 - {r}^{n} )}{1 - r } \: \: \: r < 1 \\ \\ S_{5} = \frac{1( 1 - {( \frac{-3}{2})}^{5} )}{1 - \frac{-3}{2} } \: \: \: r < 1 \\ \\ S_{5}= \frac{1(1 - (\frac{-243}{32}) }{\frac{5}{2}} \\ \\](https://tex.z-dn.net/?f=S_%7Bn%7D+%3D+%5Cfrac%7Ba%28+1+-+%7Br%7D%5E%7Bn%7D+%29%7D%7B1+-+r+%7D+%5C%3A+%5C%3A+%5C%3A+r+%26lt%3B+1+%5C%5C+%5C%5C+S_%7B5%7D+%3D+%5Cfrac%7B1%28+1+-+%7B%28+%5Cfrac%7B-3%7D%7B2%7D%29%7D%5E%7B5%7D+%29%7D%7B1+-+%5Cfrac%7B-3%7D%7B2%7D+%7D+%5C%3A+%5C%3A+%5C%3A+r+%26lt%3B+1+%5C%5C+%5C%5C+S_%7B5%7D%3D+%5Cfrac%7B1%281+-+%28%5Cfrac%7B-243%7D%7B32%7D%29+%7D%7B%5Cfrac%7B5%7D%7B2%7D%7D+%5C%5C+%5C%5C)
![S_{5}= \frac{ \frac{32 + 243}{32} }{ \frac{5}{2} } \\ \\ S_{5}= \frac{275}{80} \\ \\ S_{5}= 3.43\\ S_{5}= \frac{ \frac{32 + 243}{32} }{ \frac{5}{2} } \\ \\ S_{5}= \frac{275}{80} \\ \\ S_{5}= 3.43\\](https://tex.z-dn.net/?f=+S_%7B5%7D%3D+%5Cfrac%7B+%5Cfrac%7B32+%2B+243%7D%7B32%7D+%7D%7B+%5Cfrac%7B5%7D%7B2%7D+%7D+%5C%5C+%5C%5C+S_%7B5%7D%3D+%5Cfrac%7B275%7D%7B80%7D+%5C%5C+%5C%5C+S_%7B5%7D%3D+3.43%5C%5C)
ii) If
=1023, r = 4, find a.
![S_{n} = \frac{a( {r}^{n} - 1)}{r - 1} \: \: \: r > 1 \\ \\ 1023 = \frac{a( {4}^{5} - 1)}{4 - 1} \\ \\ a( {4}^{5} - 1) = 1023 \times 3 \\ \\ a = \frac{1023 \times 3}{1024} \\ \\ a = 2.99\\\\ S_{n} = \frac{a( {r}^{n} - 1)}{r - 1} \: \: \: r > 1 \\ \\ 1023 = \frac{a( {4}^{5} - 1)}{4 - 1} \\ \\ a( {4}^{5} - 1) = 1023 \times 3 \\ \\ a = \frac{1023 \times 3}{1024} \\ \\ a = 2.99\\\\](https://tex.z-dn.net/?f=S_%7Bn%7D+%3D+%5Cfrac%7Ba%28+%7Br%7D%5E%7Bn%7D+-+1%29%7D%7Br+-+1%7D+%5C%3A+%5C%3A+%5C%3A+r+%26gt%3B+1+%5C%5C+%5C%5C+1023+%3D+%5Cfrac%7Ba%28+%7B4%7D%5E%7B5%7D+-+1%29%7D%7B4+-+1%7D+%5C%5C+%5C%5C+a%28+%7B4%7D%5E%7B5%7D+-+1%29+%3D+1023+%5Ctimes+3+%5C%5C+%5C%5C+a+%3D+%5Cfrac%7B1023+%5Ctimes+3%7D%7B1024%7D+%5C%5C+%5C%5C+a+%3D+2.99%5C%5C%5C%5C)
Hope it helps you.
Sum of n terms of a G.P. is given by
i) If a = 1, r = -3/2 find
here a= 1
Sum of n terms is given by second formula
ii) If
Hope it helps you.
Similar questions