For a given set of the conditions, a casting made of the following metal will lead to the minimum of yield 1 Low Carbon Steel 2 Medium Carbon Steel 3 High Carbon Steel 4 Aluminium alloys
Answers
Answered by
0
Steel classification is important in understanding what types are used in certain applications and which are used for others. For example, most commercial steels are classified into one of three groups: plain carbon, low-alloy, and high-alloy. Steel classification systems are set up and updated frequently for this type of information.

Generally, carbon is the most important commercial steel alloy. Increasing carbon content increases hardness and strength and improves hardenability. But carbon also increases brittleness and reduces weldability because of its tendency to form martensite. This means carbon content can be both a blessing and a curse when it comes to commercial steel.
And while there are steels that have up to 2 percent carbon content, they are the exception. Most steel contains less than 0.35 percent carbon. To put this in perspective, keep in mind that's 35/100 of 1 percent.
Now, any steel in the 0.35 to 1.86 percent carbon content range can be hardened using a heat-quench-temper cycle. Most commercial steels are classified into one of three groups:
Plain carbon steelsLow-alloy steelsHigh-alloy steels
Plain Carbon Steels
These steels usually are iron with less than 1 percent carbon, plus small amounts of manganese, phosphorus, sulfur, and silicon. The weldability and other characteristics of these steels are primarily a product of carbon content, although the alloying and residual elements do have a minor influence.

Plain carbon steels are further subdivided into four groups:
LowMediumHighVery high
Low. Often called mild steels, low-carbon steels have less than 0.30 percent carbon and are the most commonly used grades. They machine and weld nicely and are more ductile than higher-carbon steels.
Medium. Medium-carbon steels have from 0.30 to 0.45 percent carbon. Increased carbon means increased hardness and tensile strength, decreased ductility, and more difficult machining.
High. With 0.45 to 0.75 percent carbon, these steels can be challenging to weld. Preheating, postheating (to control cooling rate), and sometimes even heating during welding become necessary to produce acceptable welds and to control the mechanical properties of the steel after welding.
Very High. With up to 1.50 percent carbon content, very high-carbon steels are used for hard steel products such as metal cutting tools and truck springs. Like high-carbon steels, they require heat treating before, during, and after welding to maintain their mechanical properties.
Low-alloy Steels
When these steels are designed for welded applications, their carbon content is usually below 0.25 percent and often below 0.15 percent. Typical alloys include nickel, chromium, molybdenum, manganese, and silicon, which add strength at room temperatures and increase low-temperature notch toughness.
These alloys can, in the right combination, improve corrosion resistance and influence the steel's response to heat treatment. But the alloys added can also negatively influence crack susceptibility, so it's a good idea to use low-hydrogen welding processes with them. Preheating might also prove necessary. This can be determined by using the carbon equivalent formula, which we'll cover in a later issue.
High-alloy Steels
For the most part, we're talking about stainless steel here, the most important commercial high-alloy steel. Stainless steels are at least 12 percent chromium and many have high nickel contents. The three basic types of stainless are:
AusteniticFerriticMartensitic
Martensitic stainless steels make up the cutlery grades. They have the least amount of chromium, offer high hardenability, and require both pre- and postheating when welding to prevent cracking in the heat-affected zone (HAZ).
Ferritic stainless steels have 12 to 27 percent chromium with small amounts of austenite-forming alloys.
Austenitic stainless steels offer excellent weldability, but austenite isn't stable at room temperature. Consequently, specific alloys must be added to stabilize austenite. The most important austenite stabilizer is nickel, and others include carbon, manganese, and nitrogen.
Special properties, including corrosion resistance, oxidation resistance, and strength at high temperatures, can be incorporated into austenitic stainless steels by adding certain alloys like chromium, nickel, molybdenum, nitrogen, titanium, and columbium. And while carbon can add strength at high temperatures, it can also reduce corrosion resistance by forming a compound with chromium. It's important to note that austenitic alloys can't be hardened by heat treatment. That means they don't harden in the welding HAZ.
* Stainless steels always have a high chromium content, often considerable amounts of nickel, and sometimes contain molybdenum and other elements. Stainless steels are identified by a three-digit number beginning with 2, 3, 4, or 5.
Figure 1
Be sure to check the appropriate AISI and SAE publications for the latest revisions.
.

Generally, carbon is the most important commercial steel alloy. Increasing carbon content increases hardness and strength and improves hardenability. But carbon also increases brittleness and reduces weldability because of its tendency to form martensite. This means carbon content can be both a blessing and a curse when it comes to commercial steel.
And while there are steels that have up to 2 percent carbon content, they are the exception. Most steel contains less than 0.35 percent carbon. To put this in perspective, keep in mind that's 35/100 of 1 percent.
Now, any steel in the 0.35 to 1.86 percent carbon content range can be hardened using a heat-quench-temper cycle. Most commercial steels are classified into one of three groups:
Plain carbon steelsLow-alloy steelsHigh-alloy steels
Plain Carbon Steels
These steels usually are iron with less than 1 percent carbon, plus small amounts of manganese, phosphorus, sulfur, and silicon. The weldability and other characteristics of these steels are primarily a product of carbon content, although the alloying and residual elements do have a minor influence.

Plain carbon steels are further subdivided into four groups:
LowMediumHighVery high
Low. Often called mild steels, low-carbon steels have less than 0.30 percent carbon and are the most commonly used grades. They machine and weld nicely and are more ductile than higher-carbon steels.
Medium. Medium-carbon steels have from 0.30 to 0.45 percent carbon. Increased carbon means increased hardness and tensile strength, decreased ductility, and more difficult machining.
High. With 0.45 to 0.75 percent carbon, these steels can be challenging to weld. Preheating, postheating (to control cooling rate), and sometimes even heating during welding become necessary to produce acceptable welds and to control the mechanical properties of the steel after welding.
Very High. With up to 1.50 percent carbon content, very high-carbon steels are used for hard steel products such as metal cutting tools and truck springs. Like high-carbon steels, they require heat treating before, during, and after welding to maintain their mechanical properties.
Low-alloy Steels
When these steels are designed for welded applications, their carbon content is usually below 0.25 percent and often below 0.15 percent. Typical alloys include nickel, chromium, molybdenum, manganese, and silicon, which add strength at room temperatures and increase low-temperature notch toughness.
These alloys can, in the right combination, improve corrosion resistance and influence the steel's response to heat treatment. But the alloys added can also negatively influence crack susceptibility, so it's a good idea to use low-hydrogen welding processes with them. Preheating might also prove necessary. This can be determined by using the carbon equivalent formula, which we'll cover in a later issue.
High-alloy Steels
For the most part, we're talking about stainless steel here, the most important commercial high-alloy steel. Stainless steels are at least 12 percent chromium and many have high nickel contents. The three basic types of stainless are:
AusteniticFerriticMartensitic
Martensitic stainless steels make up the cutlery grades. They have the least amount of chromium, offer high hardenability, and require both pre- and postheating when welding to prevent cracking in the heat-affected zone (HAZ).
Ferritic stainless steels have 12 to 27 percent chromium with small amounts of austenite-forming alloys.
Austenitic stainless steels offer excellent weldability, but austenite isn't stable at room temperature. Consequently, specific alloys must be added to stabilize austenite. The most important austenite stabilizer is nickel, and others include carbon, manganese, and nitrogen.
Special properties, including corrosion resistance, oxidation resistance, and strength at high temperatures, can be incorporated into austenitic stainless steels by adding certain alloys like chromium, nickel, molybdenum, nitrogen, titanium, and columbium. And while carbon can add strength at high temperatures, it can also reduce corrosion resistance by forming a compound with chromium. It's important to note that austenitic alloys can't be hardened by heat treatment. That means they don't harden in the welding HAZ.
* Stainless steels always have a high chromium content, often considerable amounts of nickel, and sometimes contain molybdenum and other elements. Stainless steels are identified by a three-digit number beginning with 2, 3, 4, or 5.
Figure 1
Be sure to check the appropriate AISI and SAE publications for the latest revisions.
.
Answered by
0
The correct option to this question is option
1.For a given set of the conditions, a casting made of the metal that will lead to the minimum of yield is Low Carbon Steel.
The low carbon steel include those with a carbon content of up to 0.30 percent. Steels in this range are most widely used for industrial fabrication and construction.
Similar questions
History,
7 months ago
Biology,
7 months ago
English,
1 year ago
Biology,
1 year ago
Political Science,
1 year ago