Math, asked by yasarshaikhh, 1 year ago

For a poisson variate X, if p(0)=p(2) then find p(3).​

Answers

Answered by MaheswariS
1

Answer:

The value of P(3) is

\bf\frac{e^{-\sqrt{2}}\,\sqrt{2}}{3}

Step-by-step explanation:

Concept:

The probability mass fuction of poisson distribution is

\boxed{\bf\,P(x)=\frac{e^{-\lambda}\,{\lambda}^x}{x!}}

Given:

P(0)=P(2)

\implies\frac{e^{-\lambda}\,{\lambda}^0}{0!}}=\frac{e^{-\lambda}\,{\lambda}^2}{2!}

\implies\frac{e^{-\lambda}.1}{1}}=\frac{e^{-\lambda}\,{\lambda}^2}{2}

\implies\,1=\frac{{\lambda}^2}{2}

\implies\,{\lambda}^2=2

\implies\,\lambda=\sqrt{2}

Now,

P(3)=\frac{e^{-\sqrt{2}}\,(\sqrt{2})^3}{3!}

P(3)=\frac{e^{-\sqrt{2}}\,2\sqrt{2}}{6}

P(3)=\frac{e^{-\sqrt{2}}\,\sqrt{2}}{3}

Answered by lublana
0

p(3)=\frac{\sqrt2e^{-\sqrt2}}{3}

Step-by-step explanation:

We are given that X is random variable

p(0)=p(2)

The probability mass function is given by

f(x,\lambda)=p(x=k)=\frac{\lambda^{k}e^{-\lambda}}{k!}

Where

\lambda=Mean value of  X=V(X)>0

p(x=k)=Probability at x=k

p(x=0)=\frac{\lambda^{0}e^{-\lambda}}{0!}=e^{-\lambda}

p(2)=\frac{\lambda^2e^{-\lambda}}{2!}

\frac{\lambda^2e^{-\lambda}}{2!}=e^{-\lambda}

\lambda^2=2!=2\times 1=2

\lambda=\sqrt2

Substitute the values then we get

p(3)=p(x=3)=\frac{(\sqrt2)^3e^{-\sqrt2}}{3!}=\frac{e^{-\sqrt2}2\sqrt2}{3\times 2\times 1}=\frac{\sqrt2e^{-\sqrt2}}{3}

p(3)=\frac{\sqrt2e^{-\sqrt2}}{3}

#Learns more:

Explaining of poisson distribution

https://brainly.in/question/3172723

Similar questions