Math, asked by radhika293558, 8 months ago

For a positive constant "a" find dy/dx , where
y =  {a}^{t +  \frac{1}{t} } \: and \: x = (t +  \frac{1}{t})^{a}


Answers

Answered by CrEEpycAmp
17

\underline{\huge{Answer:-}}

Step-by-step explanation:

\underline{\huge{Solution:-}}

Observe that both y and x are defined for all real t  \: \neq \: 0. Clearly

  \implies \:  \large\mathcal{ \frac{dy}{dt} =  \frac{d}{dt}( {a}^{t +  \frac{1}{t} }) =  {a}^{t +  \frac{1}{t} } \frac{d}{dt}(t +  \frac{1}{t}). \: log \: a  } \\  \\  \implies \large \mathcal{ =  {a}^{t +  \frac{1}{t} } (1 -  \frac{1}{ {t}^{2} })log \: a }

Sɪɪʟʀʟʏ,

  \implies \large \mathcal{ \frac{dx}{dt} = a[t +  \frac{1}{t} ] ^{a - 1} . \frac{d}{dt}(t +  \frac{1}{t})    } \\  \\  \implies \large \mathcal{a[t +  \frac{1}{t} ] ^{a - 1}.(1 -  \frac{1}{ {t}^{2} })  }

 \large \mathcal{ \frac{dx}{dt} \neq0 \: only \: if \:  \neq \:  \pm \: 1. \: Thus \: for \: t \:  \neq \:  \pm \: 1, }

 \implies \large \mathcal{ \frac{dy}{dx} =  \frac{ \frac{dy}{dt} }{ \frac{dx}{dt} } =  \frac{ {a}^{t +  \frac{1}{t} }(1 -  \frac{1}{ {t}^{2} })log \: a  }{a [t + \frac{1}{t} ] ^{a - 1} .(1 -  \frac{1}{ {t}^{2} } )}   } \\  \\      \:  \:  \:  \:  \Large \fbox \mathcal{Ans  =  \frac{ {a}^{t +  \frac{1}{t} }log \: a }{a(t +  \frac{1}{t} ) ^{a - 1} } } \\

Similar questions