Physics, asked by Thusharabuddy511, 10 months ago

For a projectile motion ground to ground maximum height is equal to horizontal range . Find the angle of projection.

Answers

Answered by ShivamKashyap08
38

{ \huge \bf { \mid{ \overline{ \underline{Question}}} \mid}}

For a projectile motion ground to ground maximum height is equal to horizontal range . Find the angle of projection?

\huge{\bold{\underline{\underline{....Answer....}}}}

\huge{\bold{\underline{Given:-}}}

  • Let the angle at the Projectile is projected be θ.
  • And, The range & Height of Projectile be "R" and "H" respectively.

\huge{\bold{\underline{Explanation:-}}}

\rule{300}{1.5}

As Mentioned in the above Question,

\large{\boxed{\tt H_{max} = R}}

Substituting the Respective Formulas,

\large{\tt \leadsto \dfrac{u^2 sin^2 \theta}{2g} = \dfrac{u^2 sin 2\theta}{g}}

\large{\tt \leadsto \dfrac{u^2 sin^2 \theta}{2\cancel{g}} = \dfrac{u^2 sin 2\theta}{\cancel{g}}}

\large{\tt \leadsto \dfrac{u^2 sin^2 \theta}{2} = u^2 sin 2\theta}

As we Know,

Sin2θ = 2sinθcosθ,

Substituting it,

\large{\tt \leadsto \dfrac{u^2 sin^2 \theta}{2} = u^2  \times 2sin \theta cos \theta}

\large{\tt \leadsto \dfrac{\cancel{u^2} sin^2 \theta}{2} = \cancel{u^2}  \times 2sin \theta cos \theta}

\large{\tt \leadsto \dfrac{sin^2 \theta}{2} =  2sin \theta cos \theta}

\large{\tt \leadsto \dfrac{sin\theta \times sin\theta}{2} =  2sin \theta cos \theta}

\large{\tt \leadsto \dfrac{sin\theta \times \cancel{sin\theta}}{2} =  2\cancel{sin \theta} cos \theta}

\large{\tt \leadsto \dfrac{sin\theta }{2} =  2 cos \theta}

Rearranging,

\large{\tt \leadsto \dfrac{sin \theta}{cos \theta} = 2 \times 2}

As we know,

Sinθ/Cosθ = Tanθ, Substituting it,

\large{\tt \leadsto Tan\theta = 4}

\huge{\boxed{\boxed{\tt \theta = Tan^{-1} (4) \degree}}}

So,the Angle of Projection is θ = Tan¹(4)°.

\rule{300}{1.5}

Answered by Anonymous
9

\Huge{\underline{\underline{\red{\mathfrak{Answer :}}}}}

We are Given,

  • In an angular projection Maximum height and horizontal range are equal.

And we have to find Angle of projection.

\rule{200}{2}

Formula for Maximum Height is :-

\LARGE{\boxed{\boxed{\green{\bf{h \: = \: \frac{u^2 \: Sin^2 \theta}{2g}}}}}}

And for Horizontal Range is :-

\LARGE{\boxed{\boxed{\orange{\bf{R \: = \: \frac{u^2 \: Sin2 \theta}{g}}}}}}

A.T.Q,

Maximum height and Horizontal Range are equal.

\Large \leadsto {\sf{\frac{\cancel{u^2}Sin^2 \theta}{2 \cancel{g}} \: = \: \frac{\cancel{u^2} Sin 2 \theta }{\cancel{g}}}}

\Large \leadsto {\sf{\frac{Sin^2 \theta}{2} \: = \: \frac{Sin 2 \theta}{1}}}

\Large \leadsto {\sf{\frac{Sin \theta \: \times \: \cancel{Sin \theta}}{2} \: = \: 2 \cancel{Sin \theta} Cos \theta }}

\Large \leadsto {\sf{\frac{Sin \theta }{2} \: = \: 2 Cos \theta}}

\Large \leadsto {\sf{\frac{Sin \theta }{4} \: = \: Cos \theta}}

\Large \leadsto {\sf{\frac{Sin \theta }{Cos \theta} \: = \: 4}}

\Large \leadsto {\sf{Tan \theta \: = \: 4}}

\Large \leadsto {\sf{ \theta \: = \: Tan^{-1}( 4)}}

\LARGE{\boxed{\boxed{\red{\sf{ \theta \: = \: 75.963^{\circ}}}}}}

Similar questions