Math, asked by karangarg143g, 8 months ago

For a square matrix A and a non-singular matrix B of the
same order, the value of det(
B inverse AB) is:
options a. |A| b. |A inverse| c. |B| d. |B inverse| ​

Answers

Answered by experience004
1

Answer:

okkkkkkkkkk........ ...

Answered by pulakmath007
1

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO DETERMINE

 \sf{The \:  value  \: of \:  \: det( {B}^{ - 1} AB)}

for a square matrix A and a non-singular matrix B of the same order

PROPERTIES ON DETERMINANT

1. For two square matrices A and B

 \sf{det(A  B) = det \:( A  )\times det \: ( B )\: }

2. If A is a non-singular square matrix then

 \displaystyle \sf{det({A}^{ - 1}) =  \frac{1}{det \: (A)}  \: }

CALCULATION

 \sf{det( {B}^{ - 1} AB)}

  = \sf{det( {B}^{ - 1}) \times det( A) \times det(B)} \:  \: ( \: by \: property \:  1)

 =  \displaystyle \sf{ \frac{1}{det \: (B)}  \times det(A) \times det(B) \: } \:  \:   \: (\: by \: property \: 2 \: )

 =  \displaystyle \sf{ det(A) \: }

RESULT

 \boxed{ \:  \sf{det( {B}^{ - 1} AB) \:  \: = det( A) } \:  \:  \: }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Represent all possible one-one functions from the set A = {1, 2} to the set B = {3,4,5) using arrow diagram.

https://brainly.in/question/22321917

Similar questions