Math, asked by AvniSahu, 1 year ago

For a triangle ABC show that
Sin (A + B)/2 = cos C/2

Answers

Answered by HAPPY1231
177
sin(A+B/2)=cosC/2

A+B+C=180 (sum of angles of a triangle=180)

A+B=180-C

A+B/2=180-C/2

=180/2-C/2

=(90-C/2)

SUBSTITUTION....

sin(90-C/2) since,sin(90-A)=cos A

=cosC/2

LHS=RHS
Answered by erinna
35

Given:

Triangle ABC.

To prove:

\sin \left(\dfrac{A+B}{2}\right)=\cos \dfrac{c}{2}

Proof:

In triangle ABC,

A+B+C=180^\circ      (Angle sum property)

A+B=180^\circ-C            ...(i)

Taking LHS of \sin \left(\dfrac{A+B}{2}\right)=\cos \dfrac{c}{2}, we get

LHS=\sin \left(\dfrac{A+B}{2}\right)

LHS=\sin \left(\dfrac{180^\circ -C}{2}\right)     [Using (i)]

LHS=\sin \left(90^\circ -\dfrac{C}{2}\right)

LHS=\cos \dfrac{C}{2}     [\because \sin(90^\circ -\theta)=\cos \theta]

LHS=RHS

Hence proved.

Similar questions