for a vehicle moving on a banked curved road obtain the formula for the maximum safe speed
Answers
Max Velocity on Banked Road :
Centripetal force is :
- mv²/R =
Also, weight will be :
- mg =
Now, dividing the Equations:
For max speed : f =
Hope It Helps
Explanation:
Max Velocity on Banked Road :
Centripetal force is :
mv²/R = f\cos(\theta) + N\sin(\theta)fcos(θ)+Nsin(θ)
Also, weight will be :
mg = N\cos(\theta)-f\sin(\theta)Ncos(θ)−fsin(θ)
Now, dividing the Equations:
\rm \: \dfrac{( \frac{m {v}^{2} }{R} )}{mg} = \dfrac{N \sin( \theta) + f \cos( \theta) }{N \cos( \theta) - f \sin( \theta) }
mg
(
R
mv
2
)
=
Ncos(θ)−fsin(θ)
Nsin(θ)+fcos(θ)
\rm \implies\: \dfrac{ {v}^{2} }{Rg} = \dfrac{N \sin( \theta) + f \cos( \theta) }{N \cos( \theta) - f \sin( \theta) } ⟹
Rg
v
2
=
Ncos(θ)−fsin(θ)
Nsin(θ)+fcos(θ)
\rm \implies\: \dfrac{ {v}^{2} }{Rg} = \dfrac{ \tan( \theta) + \frac{f}{N} }{1 - \frac{f}{N} \tan( \theta) } ⟹
Rg
v
2
=
1−
N
f
tan(θ)
tan(θ)+
N
f
For max speed : f = \mu_{s}Nμ
s
N
\rm \implies\: \dfrac{ {(v_{max})}^{2} }{Rg} = \dfrac{ \tan( \theta) + \frac{f}{N} }{1 - \frac{f}{N} \tan( \theta) } ⟹
Rg
(v
max
)
2
=
1−
N
f
tan(θ)
tan(θ)+
N
f
\rm \implies\: \dfrac{ {(v_{max})}^{2} }{Rg} = \dfrac{ \tan( \theta) + \mu_{s} }{1 - \mu_{s} \tan( \theta) } ⟹
Rg
(v
max
)
2
=
1−μ
s
tan(θ)
tan(θ)+μ
s
\rm \implies\: {(v_{max})}^{2} = Rg \bigg[\dfrac{ \tan( \theta) + \mu_{s} }{1 - \mu_{s} \tan( \theta) } \bigg]⟹(v
max
)
2
=Rg[
1−μ
s
tan(θ)
tan(θ)+μ
s
]
\rm \implies\: v_{max} = \sqrt{ Rg \bigg[\dfrac{ \tan( \theta) + \mu_{s} }{1 - \mu_{s} \tan( \theta) } \bigg]}⟹v
max
=
Rg[
1−μ
s
tan(θ)
tan(θ)+μ
s
]
Hope It Helps