Physics, asked by shahparshwa2004, 4 months ago

for a vehicle moving on a banked curved road obtain the formula for the maximum safe speed​

Answers

Answered by nirman95
3

Max Velocity on Banked Road :

Centripetal force is :

  • mv²/R = f\cos(\theta) + N\sin(\theta)

Also, weight will be :

  • mg = N\cos(\theta)-f\sin(\theta)

Now, dividing the Equations:

  \rm \:  \dfrac{( \frac{m {v}^{2} }{R} )}{mg}  =  \dfrac{N \sin( \theta)  + f \cos( \theta) }{N \cos( \theta) - f \sin( \theta)  }

  \rm  \implies\:  \dfrac{ {v}^{2}  }{Rg}  =  \dfrac{N \sin( \theta)  + f \cos( \theta) }{N \cos( \theta) - f \sin( \theta)  }

  \rm  \implies\:  \dfrac{ {v}^{2}  }{Rg}  =  \dfrac{ \tan( \theta)   +  \frac{f}{N} }{1 -  \frac{f}{N}  \tan( \theta) }

For max speed : f = \mu_{s}N

  \rm  \implies\:  \dfrac{ {(v_{max})}^{2}  }{Rg}  =  \dfrac{ \tan( \theta)   +  \frac{f}{N} }{1 -  \frac{f}{N}  \tan( \theta) }

  \rm  \implies\:  \dfrac{ {(v_{max})}^{2}  }{Rg}  =  \dfrac{ \tan( \theta)  +  \mu_{s} }{1 -   \mu_{s} \tan( \theta) }

  \rm  \implies\:  {(v_{max})}^{2}  =  Rg \bigg[\dfrac{ \tan( \theta)  +  \mu_{s} }{1 -   \mu_{s} \tan( \theta) }  \bigg]

  \rm  \implies\:  v_{max}  =  \sqrt{ Rg \bigg[\dfrac{ \tan( \theta)  +  \mu_{s} }{1 -   \mu_{s} \tan( \theta) }  \bigg]}

Hope It Helps

Attachments:
Answered by krohit68272
0

Explanation:

Max Velocity on Banked Road :

Centripetal force is :

mv²/R = f\cos(\theta) + N\sin(\theta)fcos(θ)+Nsin(θ)

Also, weight will be :

mg = N\cos(\theta)-f\sin(\theta)Ncos(θ)−fsin(θ)

Now, dividing the Equations:

\rm \: \dfrac{( \frac{m {v}^{2} }{R} )}{mg} = \dfrac{N \sin( \theta) + f \cos( \theta) }{N \cos( \theta) - f \sin( \theta) }

mg

(

R

mv

2

)

=

Ncos(θ)−fsin(θ)

Nsin(θ)+fcos(θ)

\rm \implies\: \dfrac{ {v}^{2} }{Rg} = \dfrac{N \sin( \theta) + f \cos( \theta) }{N \cos( \theta) - f \sin( \theta) } ⟹

Rg

v

2

=

Ncos(θ)−fsin(θ)

Nsin(θ)+fcos(θ)

\rm \implies\: \dfrac{ {v}^{2} }{Rg} = \dfrac{ \tan( \theta) + \frac{f}{N} }{1 - \frac{f}{N} \tan( \theta) } ⟹

Rg

v

2

=

1−

N

f

tan(θ)

tan(θ)+

N

f

For max speed : f = \mu_{s}Nμ

s

N

\rm \implies\: \dfrac{ {(v_{max})}^{2} }{Rg} = \dfrac{ \tan( \theta) + \frac{f}{N} }{1 - \frac{f}{N} \tan( \theta) } ⟹

Rg

(v

max

)

2

=

1−

N

f

tan(θ)

tan(θ)+

N

f

\rm \implies\: \dfrac{ {(v_{max})}^{2} }{Rg} = \dfrac{ \tan( \theta) + \mu_{s} }{1 - \mu_{s} \tan( \theta) } ⟹

Rg

(v

max

)

2

=

1−μ

s

tan(θ)

tan(θ)+μ

s

\rm \implies\: {(v_{max})}^{2} = Rg \bigg[\dfrac{ \tan( \theta) + \mu_{s} }{1 - \mu_{s} \tan( \theta) } \bigg]⟹(v

max

)

2

=Rg[

1−μ

s

tan(θ)

tan(θ)+μ

s

]

\rm \implies\: v_{max} = \sqrt{ Rg \bigg[\dfrac{ \tan( \theta) + \mu_{s} }{1 - \mu_{s} \tan( \theta) } \bigg]}⟹v

max

=

Rg[

1−μ

s

tan(θ)

tan(θ)+μ

s

]

Hope It Helps

Attachments:
Similar questions