Math, asked by PragyaTbia, 1 year ago

For ΔABC, express a\ sin^{2}(\frac{C}{2})\ +\ c\ sin^{2}(\frac{A}{2}) in terms of s, a, b, and c.

Answers

Answered by mysticd
2
Solution :

************************************

We know that ,

sinC/2 = √[(s-a)(s-b)]/ab

SinA/2 = √[(s-b)(s-c)]/2

***************************************

Now ,

asin²C/2 + cSin²A/2

=a × [(s-a)(s-b)]/ab + c × [(s-b)(s-c)]/bc

= [(s-a)(s-b)]/b + [(s-b)(s-c)]/b

= [(s-b)/b ] ( s - a + s - c )

= [(s-b)/b ] ( 2s - a - c )

= [ (s-b)/b ] ( a + b + c - a - c )

[ Since , 2s = a + b + c ]

= [ ( s - b )/b ] × b

= s - b



Answered by rohitkumargupta
0

HELLO DEAR,



Answer:


Step-by-step explanation:




We know that ,


sinC/2 = √[(s-a)(s-b)]/ab


SinA/2 = √[(s-b)(s-c)]/2



Now ,


asin²C/2 + cSin²A/2


=> a * [(s-a)(s-b)]/ab + c × [(s-b)(s-c)]/bc


=> [(s-a)(s-b)]/b + [(s-b)(s-c)]/b


=> [(s-b)/b ] ( s - a + s - c )


=> [(s-b)/b ] ( 2s - a - c )


=> [ (s-b)/b ] ( a + b + c - a - c )


[ we know, 2s = a + b + c ]


=> [ ( s - b )/b ] * b


=> s - b



I HOPE IT'S HELP YOU DEAR,

THANKS

Similar questions