Math, asked by gauravkukreja2301, 11 months ago

for all x belongs to R, then, Lambda lies in which interval?

Attachments:

Answers

Answered by pmvjs299
1

Answer:

for all x belongs to R   \lambda\geq\frac{4}{61}        ( i.e )    \lambda  \in [\frac{4}{61} , \infty)

Step-by-step explanation:

given:

\lambda x^2-9 \lambda x + 5 \lambda + 1 > 0

This equation is quadratic on ' x ' ( form : ax^2+bx+c )

a = \lambda      b = -9\lambda    c = 5\lambda + 1

we know that,

Δ = b^2-4ac

for x ∈ R   Δ ≥ 0.

(-9\lambda)^2 - 4(\lambda)(5\lambda + 1)  \geq 0

81(\lambda)^2 - 20 (\lambda)^2-4\lambda\geq0

61(\lambda)^2-4\lambda\geq0

61(\lambda)^2\geq4\lambda

61\lambda\geq4

\lambda\geq\frac{4}{61}

Thus you got the answer ! lucky !

Hope it helps !

Similar questions