for amy integer m, prove that the square of any positive integer is of the form 5 m or (5m+1) or (5m+4)
Answers
Answered by
0
let,
a be any positive integer.
b=5
a=5q
a=5q+1
a=5q+2
a=5q+3
a=5q+4
first write this then continue from pic.....
a be any positive integer.
b=5
a=5q
a=5q+1
a=5q+2
a=5q+3
a=5q+4
first write this then continue from pic.....
Attachments:
Answered by
0
let a be any positive integer
then
b= 5
a= bq+r
0≤r<b
0≤r<5
r= 0,1,2,3,4
case 1.
r=0
a= bq+r
5q+0
(5q)^2
25q^2
5(5q^2)
let 5q^2 be m
=> 5m
case 2.
r=1
a= 5q+1
(5q+1)^2
(5q)^2+2*5q*1+(1)^2
25q^2+10q+1
5(5q^2+2q)+1
let 5q^2+2q be m
=> 5m+1
case3.
r=2
a=5q+2
(5q+2)^2
(5q)^2+2*5q*2+(2)^2
25q^2+20q+4
5(5q^2+4q)+4
let 5q^2+4q be m
=> 5m+4
case4
r=
a=5q+3
(5q+3)^2
(5q)^2+2*5q*3+(3)^2
25q^2+30q+9
25q^2+30q+5+4
5(5q^2+6q+1)+4
let 5q^2+6q+1 be m
=>5m+4
case 5.
r=4
a=5q+4
(5q+4)^2
(5q)^2+2*5q*4+(4)^2
25q^2+40q+16
25q^2+40q+15+1
5(5q^2+8q+3)+1
let 5q^2+8q+3 be m
=> 5m+1
hence from above it is proved that square of any positive integer is of the form
5m, 5m+1 & 5m+4
HOPE\: IT \: HELPS
thanks
Similar questions