Math, asked by itspiyushsharma9619, 11 months ago

For an acute angle theta sintheta + costheta take greatest value when theta is

Answers

Answered by shadowsabers03
4

Suppose we have to find the maximum value of the following.

a\sin\theta+b\cos\theta

For this we may assume a right triangle with perpendicular sides a and b Then by Pythagoras' Theorem, the hypotenuse is given by c=\sqrt{a^2+b^2}.

\setlength{\unitlength}{1mm}\begin {picture}(5,5)\put(0,0){\line(1,0){30}}\put(0,0){\line(0,1){40}}\put(30,0){\line(-3,4){30}}\put(14,-4){$a$}\put(-4,19){$b$}\put(17.5,20.5){$c=\sqrt{a^2+b^2}$}\put(25,1){$\alpha$}\end {picture}

Let \alpha be the angle inside the triangle opposite to b. Then,

\sin\alpha=\dfrac {b}{c}\quad;\quad\cos\alpha=\dfrac {a}{c}

Then come back to the function,

a\sin\theta+b\cos\theta

Just multiply and divide both the terms by c as follows:

c\left(\dfrac {a\sin\theta+b\cos\theta}{c}\right)\\\\\\=c\left (\dfrac {a}{c}\sin\theta+\dfrac {b}{c}\cos\theta\right)\\\\\\=c\left (\sin\theta\cos\alpha+\cos\theta\sin\alpha\right)\\\\\\=c\sin (\theta+\alpha)

We know that the sine value of an arbitrary angle is in the closed interval [-1, 1]. Then we can say that,

\sin (\theta+\alpha)\in [-1,\ 1]\\\\\implies\ \boxed {c\sin (\theta+\alpha)\in [-c,\ c]}

From this we get that,

\boxed{\begin {minipage}{5.5cm}$\max(a\sin\theta+b\cos\theta)=\sqrt{a^2+b^2}$\\\\$\min(a\sin\theta+b\cos\theta)=-\sqrt{a^2+b^2}$\end {minipage}}

So the maximum value of \sin\theta+\cos\theta is (a=b=1),

\sqrt {1^2+1^2}=\sqrt 2

But we have to find the value of \theta satisfying the given condition,

\sin\theta+\cos\theta=\sqrt 2,\quad\theta\in\left (0,\ \dfrac {\pi}{2}\right)

So,

(\sin\theta+\cos\theta)^2=2\\\\\sin^2\theta+\cos^2\theta+2\sin\theta\cos\theta=2\\\\\sin\theta\cos\theta=\dfrac {1}{2}\quad\quad [\because\ \sin^2\theta+\cos^2\theta=1]

Again,

\sin^2\theta+\cos^2\theta+2\sin\theta\cos\theta=2\\\\\sin^2\theta+\cos^2\theta+2\sin\theta\cos\theta -4\sin\theta\cos\theta=2-2\quad\quad \left[\because\ \sin\theta\cos\theta=\dfrac {1}{2}\right]\\\\\sin^2\theta+\cos^2\theta-2\sin\theta\cos\theta=0\\\\(\sin\theta-\cos\theta)^2=0\\\\\sin\theta=\cos\theta

Then,

\tan\theta=1\\\\\implies\ \boxed {\boxed {\theta=\dfrac {\pi}{4}}}

#answerwithquality

#BAL

Similar questions