Math, asked by kashishsachan291107, 19 days ago

For an AP if Sn- 3n2 - 4n, then: (i) the common difference of the AP is (A) 3 (B) 6 (ii) the first term of the AP is : (A) -1 (B) 2​

Answers

Answered by mathdude500
13

\large\underline{\sf{Solution-}}

Given that,

Sum of n terms of an AP is

\rm \: S_n =  {3n}^{2} - 4n \\

Let assume that

First term of an AP series is a

Common difference of an AP is d

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

So, on substituting the values, we get

\rm \: \dfrac{n}{2}\bigg(2a + (n - 1)d\bigg) =  {3n}^{2} - 4n \\

\rm \: \dfrac{n}{2}\bigg(2a + (n - 1)d\bigg) =  n(3n - 4) \\

\rm \: \dfrac{1}{2}\bigg(2a + (n - 1)d\bigg) =  3n - 4\\

\rm \: 2a + (n - 1)d=  6n - 8\\

\rm \: 2a + nd - d=  6n - 8\\

can be re-arranged as

\rm \: (2a - d) + nd=  6n - 8\\

So, on comparing we get

\rm\implies \:d \:  =  \: 6 \\

It means, option B is correct.

and

\rm \: 2a - d =  - 8 \\

\rm \: 2a - 6 =  - 8 \\

\rm \: 2a =  - 8 + 6 \\

\rm \: 2a =  - 2 \\

\rm\implies \:a \:  =  \:  -  \: 1 \\

It means, option A is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Similar questions