for any positive integer n, prove that n^3-n is divisable by 6.
spamaars stay away!!
Answers
Answer:
For any Positive integer n, prove that n3−n divisible by 6. The condition for any number to be divisible by 6 is that the number must be individually divisible by 3 and 2. ... If n=3p+2, then n+1=3p+2+1=3(p+1). The number is divisible by 3.
Step-by-step explanation:
hope this will help you mark me as brainliest answer please
ᴛʜᴇʀᴇ ᴀʀᴇ ᴛᴡᴏ ᴍᴇᴛʜᴏᴅꜱ ᴛᴏ ꜱᴏʟᴠᴇ ᴛʜᴇ ᴘʀᴏʙʟᴇᴍ ᴡʜɪᴄʜ ᴀʀᴇ ᴅɪꜱᴄᴜꜱꜱᴇᴅ ʙᴇʟᴏᴡ.
ᴍᴇᴛʜᴏᴅ 1:
ʟᴇᴛ ᴜꜱ ᴄᴏɴꜱɪᴅᴇʀ
ᴀ = ɴ3 – ɴ
ᴀ = ɴ (ɴ2 – 1)
ᴀ = ɴ (ɴ + 1)(ɴ – 1)
ᴀꜱꜱᴜᴍᴛɪᴏɴꜱ:
1. ᴏᴜᴛ ᴏꜰ ᴛʜʀᴇᴇ (ɴ – 1), ɴ, (ɴ + 1) ᴏɴᴇ ᴍᴜꜱᴛ ʙᴇ ᴇᴠᴇɴ, ꜱᴏ ᴀ ɪꜱ ᴅɪᴠɪꜱɪʙʟᴇ ʙʏ 2.
2. (ɴ – 1) , ɴ, (ɴ + 1) ᴀʀᴇ ᴄᴏɴꜱᴇᴄᴜᴛɪᴠᴇ ɪɴᴛᴇɢᴇʀꜱ ᴛʜᴜꜱ ᴀꜱ ᴘʀᴏᴠᴇᴅ ᴀ ᴍᴜꜱᴛ ʙᴇ ᴅɪᴠɪꜱɪʙʟᴇ ʙʏ 3.
ꜰʀᴏᴍ (1) ᴀɴᴅ (2) ᴀ ᴍᴜꜱᴛ ʙᴇ ᴅɪᴠɪꜱɪʙʟᴇ ʙʏ 2 × 3 = 6
ᴛʜᴜꜱ, ɴ³ – ɴ ɪꜱ ᴅɪᴠɪꜱɪʙʟᴇ ʙʏ 6 ꜰᴏʀ ᴀɴʏ ᴘᴏꜱɪᴛɪᴠᴇ ɪɴᴛᴇɢᴇʀ ɴ.
ᴍᴇᴛʜᴏᴅ 2:
ᴡʜᴇɴ ᴀ ɴᴜᴍʙᴇʀ ɪꜱ ᴅɪᴠɪᴅᴇᴅ ʙʏ 3, ᴛʜᴇ ᴘᴏꜱꜱɪʙʟᴇ ʀᴇᴍᴀɪɴᴅᴇʀꜱ ᴀʀᴇ 0 ᴏʀ 1 ᴏʀ 2.
∴ ɴ = 3ᴘ ᴏʀ 3ᴘ + 1 ᴏʀ 3ᴘ + 2, ᴡʜᴇʀᴇ ʀ ɪꜱ ꜱᴏᴍᴇ ɪɴᴛᴇɢᴇʀ.
ᴄᴀꜱᴇ 1: ᴄᴏɴꜱɪᴅᴇʀ ɴ = 3ᴘ
ᴛʜᴇɴ ɴ ɪꜱ ᴅɪᴠɪꜱɪʙʟᴇ ʙʏ 3.
ᴄᴀꜱᴇ 2: ᴄᴏɴꜱɪᴅᴇʀ ɴ = 3ᴘ + 1
ᴛʜᴇɴ ɴ – 1 = 3ᴘ + 1 –1
⇒ ɴ -1 = 3ᴘ ɪꜱ ᴅɪᴠɪꜱɪʙʟᴇ ʙʏ 3.
ᴄᴀꜱᴇ 3: ᴄᴏɴꜱɪᴅᴇʀ ɴ = 3ᴘ + 2
ᴛʜᴇɴ ɴ + 1 = 3ᴘ + 2 + 1
⇒ ɴ+1 = 3ᴘ + 3
⇒ ɴ+1 = 3(ᴘ + 1) ɪꜱ ᴅɪᴠɪꜱɪʙʟᴇ ʙʏ 3.
ꜱᴏ, ᴡᴇ ᴄᴀɴ ꜱᴀʏ ᴛʜᴀᴛ ᴏɴᴇ ᴏꜰ ᴛʜᴇ ɴᴜᴍʙᴇʀꜱ ᴀᴍᴏɴɢ ɴ, ɴ – 1 ᴀɴᴅ ɴ + 1 ɪꜱ ᴀʟᴡᴀʏꜱ ᴅɪᴠɪꜱɪʙʟᴇ ʙʏ 3.
⇒ ɴ (ɴ – 1) (ɴ + 1) ɪꜱ ᴅɪᴠɪꜱɪʙʟᴇ ʙʏ 3.
ꜱɪᴍɪʟᴀʀʟʏ, ᴡʜᴇɴ ᴀ ɴᴜᴍʙᴇʀ ɪꜱ ᴅɪᴠɪᴅᴇᴅ ʙʏ 2, ᴛʜᴇ ᴘᴏꜱꜱɪʙʟᴇ ʀᴇᴍᴀɪɴᴅᴇʀꜱ ᴀʀᴇ 0 ᴏʀ 1.
∴ ɴ = 2Q ᴏʀ 2Q + 1, ᴡʜᴇʀᴇ Q ɪꜱ ꜱᴏᴍᴇ ɪɴᴛᴇɢᴇʀ.
ᴄᴀꜱᴇ 1: ᴄᴏɴꜱɪᴅᴇʀ ɴ = 2Q
ᴛʜᴇɴ ɴ ɪꜱ ᴅɪᴠɪꜱɪʙʟᴇ ʙʏ 2.
ᴄᴀꜱᴇ 2: ᴄᴏɴꜱɪᴅᴇʀ ɴ = 2Q + 1
ᴛʜᴇɴ ɴ–1 = 2Q + 1 – 1
ɴ – 1 = 2Q ɪꜱ ᴅɪᴠɪꜱɪʙʟᴇ ʙʏ 2 ᴀɴᴅ
ɴ + 1 = 2Q + 1 + 1
ɴ +1 = 2Q + 2
ɴ+1= 2 (Q + 1) ɪꜱ ᴅɪᴠɪꜱɪʙʟᴇ ʙʏ 2.
ꜱᴏ, ᴡᴇ ᴄᴀɴ ꜱᴀʏ ᴛʜᴀᴛ ᴏɴᴇ ᴏꜰ ᴛʜᴇ ɴᴜᴍʙᴇʀꜱ ᴀᴍᴏɴɢ ɴ, ɴ – 1 ᴀɴᴅ ɴ + 1 ɪꜱ ᴀʟᴡᴀʏꜱ ᴅɪᴠɪꜱɪʙʟᴇ ʙʏ 2.
∴ ɴ (ɴ – 1) (ɴ + 1) ɪꜱ ᴅɪᴠɪꜱɪʙʟᴇ ʙʏ 2.
ꜱɪɴᴄᴇ, ɴ (ɴ – 1) (ɴ + 1) ɪꜱ ᴅɪᴠɪꜱɪʙʟᴇ ʙʏ 2 ᴀɴᴅ 3.
ᴛʜᴇʀᴇꜰᴏʀᴇ, ᴀꜱ ᴘᴇʀ ᴛʜᴇ ᴅɪᴠɪꜱɪʙɪʟɪᴛʏ ʀᴜʟᴇ ᴏꜰ 6, ᴛʜᴇ ɢɪᴠᴇɴ ɴᴜᴍʙᴇʀ ɪꜱ ᴅɪᴠɪꜱɪʙʟᴇ ʙʏ ꜱɪx.
ɴ3 – ɴ = ɴ (ɴ – 1) (ɴ + 1) ɪꜱ ᴅɪᴠɪꜱɪʙʟᴇ ʙʏ 6.
__________________________
➮Hope it helps you !✨
❃ Mark it as brilliant answer ♥️
__________________________