For any positive integer n, prove that n³-n is divisible by 6
Answers
Step-by-step explanation:
n^3 - n
n(n^2 - 1)
n(n+1)(n-1)
since
n + 1 give even number if n is odd and vice - versa like that n -1
of n is odd then two even value multiplied if even then two odd value multiplied so
take
n = 2
2(2+1)(2-1)/6 = 1
take n = 3
3(3+1)(3-1)/6 = 4
so proved
except n= 1
n³ - n = n (n² - 1) = n (n - 1) (n + 1)
Whenever a number is divided by 3, the remainder obtained is either 0 or 1 or 2.
∴ n = 3p or 3p + 1 or 3p + 2, where p is some integer.
If n = 3p, then n is divisible by 3.
If n = 3p + 1, then n – 1 = 3p + 1 –1 = 3p is divisible by 3.
If n = 3p + 2, then n + 1 = 3p + 2 + 1 = 3p + 3 = 3(p + 1) is divisible by 3.
So, we can say that one of the numbers among n, n – 1 and n + 1 is always divisible by 3.
⇒ n (n – 1) (n + 1) is divisible by 3.
Similarly, whenever a number is divided 2, the remainder obtained is 0 or 1.
∴ n = 2q or 2q + 1, where q is some integer.
If n = 2q, then n is divisible by 2.
If n = 2q + 1, then n – 1 = 2q + 1 – 1 = 2q is divisible by 2 and n + 1 = 2q + 1 + 1 = 2q + 2 = 2 (q + 1) is divisible by 2.
So, we can say that one of the numbers among n, n – 1 and n + 1 is always divisible by 2.
⇒ n (n – 1) (n + 1) is divisible by 2.
Since, n (n – 1) (n + 1) is divisible by 2 and 3.
∴ n (n-1) (n+1) = n³ - n is divisible by 6.( If a number is divisible by both 2 and 3 , then it is divisible by 6)
THANKS