Math, asked by nissa8666, 11 months ago

For any positive integer n prove that n3 - n is divisible by 6

Answers

Answered by sujan2002
1

let us assume n is 2 substitute n=2 in given

  • 2(3)-2=4
  • if n=3 then 3(3)-2=7
  • if n= 4 then 4(3)- 4=8

hence for any positive integer n.n3-nis not divisible by 6

Answered by Anonymous
0

Answer:

n3 – n = n(n2 – 1) = n(n+1)(n – 1) = (n – 1)n(n+1) = product of three consecutive positive integers.

Now, we have to show that the product of three consecutive positive integers is divisible by 6.

We know that any positive integer n is of the form 3q, 3q + 1 or 3q + 2 for some positive integer q.

Now three consecutive positive integers are n, n + 1, n + 2.

Case I. If n = 3q.

n(n + 1) (n + 2) = 3q(3q + 1) (3q + 2)

But we know that the product of two consecutive integers is an even integer.

∴ (3q + 1) (3q + 2) is an even integer, say 2r.

⟹ n(n + 1) (n + 2) = 3q × 2r = 6qr, which is divisible by 6.

Case II. If n = 3n + 1.

∴ n(n + 1) (n + 2) = (3q + 1) (3q + 2) (3q + 3)

= (even number say 2r) (3) (q + 1)

= 6r (q + 1),

which is divisible by 6.

Case III. If n = 3q + 2.

∴ n(n + 1) (n + 2) = (3q + 2) (3q + 3) (3q + 4)

= multiple of 6 for every q

= 6r (say),

which is divisible by 6.

Hence, the product of three consecutive integers is divisible by 6.

Similar questions