For any positive integer r,prove that n to the power 3
-n is divisible by 6
Answers
Answered by
0
hope this help..........
Attachments:
Answered by
0
Hi Mate !!
Here's the Solution of ur query :-
Let n be any positive integer Which when divided by 6 gives q as quotient and r as remainder.
By Euclid's Division lemma
a = bq + r
where, 0 ≤ r < b
So,
n = 6q + r
where , r = 0 , 1 , 2 , 3 , 4 , 5
____________________
n = 6q
n = 6q + 1
n = 6q + 2
n = 6q + 3
n = 6q + 4
n = 6q + 5
____________
• CASE - 1
n = 6q
n³ - n = ( 6q )³ - 6q
= 216q³ - 6q
= 6 ( 36q³ - q )
= 6m [ Where m = 36q³ - q )
Therefore , it is divisible by 6
________________________
• CASE - 2
n = 6q + 1
n³ - n = ( 6q + 1 )³ - ( 6q + 1 )
{ Using identity :- ( a + b )³ = a³ + b³ + 3a²b + 3ab² }
= 216q³ + 1 + 108q² + 18q - 6q - 1
= 6 ( 36q³ + 18q² + 2q )
= 6m [ Where m = 36q³ + 18q² + q ]
Therefore , it is divisible by 6 .
_____________________
• CASE - 3
n = 6q + 2
n³ - n = ( 6q + 2 )³ - ( 6q + 2 )
= 216q³ + 8 + 216q² + 72q - 6q - 2
= 216q³ + 216q² + 66q + 6
= 6 ( 36q³ + 36q² + 11q + 1 )
= 6m [ Where m = 36q³ + 36q² + 11q + 1 ]
Therefore, It is divisible by 6
_________________
• CASE - 4
n = 6q + 3
n³ - n = ( 6q + 3 )³ - ( 6q + 3 )
= 216q³ + 27 + 324q² + 162q - 6q - 3
= 216q³ + 324q² + 156q + 24
= 6 ( 36q³ + 54q² + 26q + 4 )
= 6m [ Where m = 36q³ + 54q² + 26q + 4 ]
Therefore , It is divisible by 6.
_________________________
• CASE - 5
n = 6q + 4
n³ - n = ( 6q + 4 )³ - ( 6q + 4 )
= 216q³ + 64 + 432q² + 288q - 6q - 4
= 216q³ + 432q² + 282q + 60
= 6 ( 36q³ + 72q² + 47q + 10 )
= 6m [ Where m = 36q³ + 72q² + 47q + 10 ]
Therefore , It is divisible by 6
_____________________
• CASE - 6
n = 6q + 5
n³ - n = ( 6q + 5 )³ - ( 6q + 5 )
= 216q³ + 125 + 540q² + 450q - 6q - 5
= 216q³ + 540q² + 444q + 120
= 6 ( 36q³ + 90q² + 74q + 20 )
= 6m [ Where m = 36q³ + 90q² + 74q + 20 ]
Therefore, It is divisible by 6
__________________
Hence , n³ - n will be divisible by 6 for any positive integer !!
Here's the Solution of ur query :-
Let n be any positive integer Which when divided by 6 gives q as quotient and r as remainder.
By Euclid's Division lemma
a = bq + r
where, 0 ≤ r < b
So,
n = 6q + r
where , r = 0 , 1 , 2 , 3 , 4 , 5
____________________
n = 6q
n = 6q + 1
n = 6q + 2
n = 6q + 3
n = 6q + 4
n = 6q + 5
____________
• CASE - 1
n = 6q
n³ - n = ( 6q )³ - 6q
= 216q³ - 6q
= 6 ( 36q³ - q )
= 6m [ Where m = 36q³ - q )
Therefore , it is divisible by 6
________________________
• CASE - 2
n = 6q + 1
n³ - n = ( 6q + 1 )³ - ( 6q + 1 )
{ Using identity :- ( a + b )³ = a³ + b³ + 3a²b + 3ab² }
= 216q³ + 1 + 108q² + 18q - 6q - 1
= 6 ( 36q³ + 18q² + 2q )
= 6m [ Where m = 36q³ + 18q² + q ]
Therefore , it is divisible by 6 .
_____________________
• CASE - 3
n = 6q + 2
n³ - n = ( 6q + 2 )³ - ( 6q + 2 )
= 216q³ + 8 + 216q² + 72q - 6q - 2
= 216q³ + 216q² + 66q + 6
= 6 ( 36q³ + 36q² + 11q + 1 )
= 6m [ Where m = 36q³ + 36q² + 11q + 1 ]
Therefore, It is divisible by 6
_________________
• CASE - 4
n = 6q + 3
n³ - n = ( 6q + 3 )³ - ( 6q + 3 )
= 216q³ + 27 + 324q² + 162q - 6q - 3
= 216q³ + 324q² + 156q + 24
= 6 ( 36q³ + 54q² + 26q + 4 )
= 6m [ Where m = 36q³ + 54q² + 26q + 4 ]
Therefore , It is divisible by 6.
_________________________
• CASE - 5
n = 6q + 4
n³ - n = ( 6q + 4 )³ - ( 6q + 4 )
= 216q³ + 64 + 432q² + 288q - 6q - 4
= 216q³ + 432q² + 282q + 60
= 6 ( 36q³ + 72q² + 47q + 10 )
= 6m [ Where m = 36q³ + 72q² + 47q + 10 ]
Therefore , It is divisible by 6
_____________________
• CASE - 6
n = 6q + 5
n³ - n = ( 6q + 5 )³ - ( 6q + 5 )
= 216q³ + 125 + 540q² + 450q - 6q - 5
= 216q³ + 540q² + 444q + 120
= 6 ( 36q³ + 90q² + 74q + 20 )
= 6m [ Where m = 36q³ + 90q² + 74q + 20 ]
Therefore, It is divisible by 6
__________________
Hence , n³ - n will be divisible by 6 for any positive integer !!
Similar questions