Math, asked by hussainsariful80, 1 year ago

For any sets A and B prove that:
1) A-B =A intersection B

Answers

Answered by shadowsabers03
0

Question:-

For any two sets \sf{A} and \sf{B} prove that \sf{A-B=A-(A\cap B).}

Solution:-

Let,

\longrightarrow\sf{x\in A-B}

\longrightarrow\sf{x\in A\land x\notin B}

\longrightarrow\sf{x\in A\land x\notin[(A\cap B)\cup(B-A)]}

\longrightarrow\sf{x\in A\land x\in[(A\cap B)\cup(B-A)]'}

\longrightarrow\sf{x\in (A\cap A)\land x\in [(A\cap B)'\cap (B-A)']}

\longrightarrow\sf{x\in A\land x\in A\land x\in (A\cap B)'\land x\in (B-A)'}

\longrightarrow\sf{[x\in A\land x\notin(A\cap B)]\land [x\in A\land\lnot[x\in B\land x\notin A]}

\longrightarrow\sf{x\in [A-(A\cap B)]\land [x\in A\land (x\notin B\lor x\in A)]}

\longrightarrow\sf{x\in[A-(A\cap B)]\land [(x\in A\land x\notin B)\lor (x\in A\land x\in A)]}

\longrightarrow\sf{x\in [A-(A\cap B)]\land x\in [(A-B)\cup A]}

\longrightarrow\sf{x\in A\land x\notin(A\cap B)\land x\in A\quad\quad[\because\ (A-B)\subseteq A]}

\longrightarrow\sf{x\in [A-(A\cap B)]}

This implies,

\longrightarrow\sf{[A-(A\cap B)]\subseteq (A-B)\quad\quad\dots (1)}

Let,

\longrightarrow\sf{x\in [A-(A\cap B)]}

\longrightarrow\sf{x\in A\land x\notin (A\cap B)}

\longrightarrow\sf{x\in A\land\lnot[x\in A\land x\in B]}

\longrightarrow\sf{x\in A\land (x\notin A\lor x\notin B)}

\longrightarrow\sf{(x\in A\land x\notin A)\lor(x\in A\land x\notin B)}

\longrightarrow\sf{x\in [(A\cap A')\cup (A-B)]}

\longrightarrow\sf{x\in (A-B)}

This implies,

\longrightarrow\sf{(A-B)\subseteq[A-(A\cap B)]\quad\quad\dots (2)}

Then, from (1) and (2),

\longrightarrow\sf{\underline {\underline {A-B=A-(A\cap B)}}}

Hence Proved!

Similar questions