Math, asked by ranjanadhawale70, 11 months ago

for any two angles A and B prove that Tan(A+B)=tanA+tanB/1-tanA.tanB​

Answers

Answered by MaheswariS
8

\underline{\textbf{To prove:}}

\mathsf{tan(A+B)=\dfrac{tan\,A+tan\,B}{1-tanA\,tanB}}

\underline{\textbf{Solution:}}

\underline{\textbf{Identities used:}}

\mathsf{1.\;sin(A+B)=sin\,A\;cos\,B+cos\,A\;sinB}

\mathsf{2.\;cos(A+B)=cos\,A\;cos\,B-sin\,A\;sinB}

\mathsf{Consider,}

\mathsf{tan(A+B)}

\mathsf{=\dfrac{sin(A+B)}{cos(A+B)}}

\mathsf{=\dfrac{sin\,A\;cos\,B+cos\,A\;sinB}{cos\,A\;cos\,B-sin\,A\;sinB}}

\textsf{Divide both numerator and denominator by cosA cosB}

\mathsf{=\dfrac{\dfrac{sin\,A\;cos\,B}{cos\,A\;cos\,B}+\dfrac{cos\,A\;sinB}{cos\,A\;cos\,B}}{\dfrac{cos\,A\;cos\,B}{cos\,A\;cos\,B}-\dfrac{sin\,A\;sinB}{cos\,A\;cos\,B}}}

\mathsf{=\dfrac{\dfrac{sin\,A}{cos\,A}+\dfrac{sinB}{cos\,B}}{1-\left(\dfrac{sin\,A}{cos\,A}\right)\left(\dfrac{sin\,B}{cos\,B}\right)}}

\mathsf{=\dfrac{tan\,A+tan\,B}{1-tanA\,tanB}}

\implies\boxed{\mathsf{tan(A+B)=\dfrac{tan\,A+tan\,B}{1-tanA\,tanB}}}

Similar questions