Math, asked by raviyadav9928, 1 year ago

For any x ∈ R, prove that cosh⁴ x - sinh⁴ x = cosh (2x).

Answers

Answered by somi173
22

We have

LHS=cosh^{4}x-sinh^{2}x\\\\LHS=(cosh^{2}x-sinh^{2}x)(cosh^{2}x+sinh^{2}x)\\\\LHS=(1)(cosh^{2}x+sinh^{2}x)\\\\LHS=cosh^{2}x+sinh^{2}x

LHS=(\frac{e^{x}+e^{-x}}{2})^{2}+(\frac{e^{x}-e^{-x}}{2})^{2}\\\\LHS=\frac{e^{2x}+e^{-2x}+2}{4}+\frac{e^{2x}+e^{-2x}-2}{4}\\\\LHS=\frac{e^{2x}+e^{-2x}+2+e^{2x}+e^{-2x}-2}{4}\\\\LHS=\frac{2e^{2x}+2e^{-2x}}{4}\\\\LHS=\frac{e^{2x}+e^{-2x}}{2}\\\\LHS=cosh(2x)=RHS

As Required



Answered by sridharreddyboyini
9

Answer:

LHS=RHS

Step-by-step explanation:

plz mark me as a brainliest

Similar questions