Math, asked by manofsteel4535, 1 year ago

For Complex Number, Find the argument of i^3.​

Answers

Answered by QuickSilver04
2

Answer:

Solving

i {}^{3}  =( i {}^{2} )i = ( - 1)i =  - i

note i^2=-1

ARGUMENT IS

a + bi = 0 + ( - 1)i

r  \cos( - )  = 0 \\ r \sin( - )  =  -  1

r {}^{2} ( \cos {}^{2}  +  \sin {}^{2})   =  \: (0) {}^{2}  + ( - 1) {}^{2}  \\  = 1

Similar questions