Math, asked by Anonymous, 3 days ago

For complex values of z, solve Izl + z = (2+i).​

Answers

Answered by Anonymous
1

Answer:

For complex values of z, solve Izl + z = (2+i).

Answered by brainlyehsanul
97

Step-by-step explanation:

Solution :

Let z = (x + iy).

Then,

  \:  \:  \:  \:  \: |z|  + z = (2 + i)

 ➡ |x + iy|  + (x + iy) = (2 + i)

➡(\sqrt{ {x}^{2} +  {y}^{2}  }  + x) + iy = (2 + i)

➡ \sqrt{ {x}^{2} +  {y}^{2}  }  + x = 2  \  \: and \: y = 1

➡ \sqrt{ {x}^{2}  +  {y}^{2} }  = (2 - x) \: and \: y = 1

➡ \sqrt{ {x}^{2} + 1 }  = (2 - x) \: and \: y = 1

➡( {x}^{2}  + 1) = (2 - x) ^{2}  \: and \: y = 1

➡( {x}^{2}  + 1) = (4 +  {x}^{2}  - 4x) \: and \: y = 1

➡4 - 4x = 1 \:  \: and \:  \: y = 1

➡x =  \frac{3}{4}  \:  \: and \:  \: y = 1.

Hence :

z = ( \frac{3}{4}  + i).

Similar questions