Math, asked by alphyrose3440, 1 year ago

For given vectors, a=2i-j+2k and b =-i+j-k find the unit vector in the direction of the vector a+b

Answers

Answered by Pitymys
5

The unit vector in the direction of the vector  \vec{c} is  \frac{\vec{c}}{|\vec{c}|}  .

The given vectors are  \vec{a}=2\bold{i}-\bold{j}+2\bold{k} , \vec{b} =-\bold{i}+\bold{j}-\bold{k} .

Now,

  \vec{a}+ \vec{b} =2\bold{i}-\bold{j}+2\bold{k} -\bold{i}+\bold{j}-\bold{k}\\<br /> \vec{a}+ \vec{b} =\bold{i}+\bold{k}  .

The unit vector in the direction of   \vec{a}+ \vec{b}  is

 \frac{ \bold{i}+\bold{k}}{|\bold{i}+\bold{k}|} =\frac{ \bold{i}+\bold{k}}{\sqrt{1^2+1^2}} =\frac{1}{\sqrt{2}}\bold{i}+\frac{1}{\sqrt{2}}\bold{k}

Answered by anukeerthika34
0

Step-by-step explanation:

please mark as brilliant

Attachments:
Similar questions