Math, asked by prasadnaidukoneni235, 9 months ago

For positive real numbers a and b, which is not true? a)√ab=√a√bb)(a+√b)(a-√b)=a²-b² c)√a/b=√a/√b d)(√a+√b) (√a-√b)=a+b​

Answers

Answered by imaduddin052
21

Answer:

option 4

Step-by-step explanation:

option four

Answered by jitumahi435
6

We need to recall the following rules of a square root.

  • \sqrt{x} \sqrt{x} =x
  • \sqrt{x} \sqrt{y} =\sqrt{xy}
  • \sqrt{\frac{x}{y} } =\frac{\sqrt{x} }{\sqrt{y} }

Given:

a and b are the positive real numbers.

Option a) \sqrt{ab}=\sqrt{a} \sqrt{b}

From the product rule of square root, we get

\sqrt{ab}=\sqrt{a} \sqrt{b}

Hence, this equation is true.

Option b) (a+\sqrt{b})(a-\sqrt{b})=a^2-b^2

Let's consider,

(a+\sqrt{b})(a-\sqrt{b})=a^2-a\sqrt{b}+a\sqrt{b}-b^2

(a+\sqrt{b})(a-\sqrt{b})=a^2-b^2

Hence, this equation is true.

Option c) \sqrt{\frac{a}{b} } =\frac{\sqrt{a} }{\sqrt{b} }

From the quotient rule of square root, we get

\sqrt{\frac{a}{b} } =\frac{\sqrt{a} }{\sqrt{b} }

Hence, this equation is true.

Option d)  (\sqrt{a} +\sqrt{b})(\sqrt{a} -\sqrt{b})=a+b

Let's consider,

(\sqrt{a} +\sqrt{b})(\sqrt{a} -\sqrt{b})=\sqrt{a}\sqrt{a}-\sqrt{a}\sqrt{b}+\sqrt{b}\sqrt{a}-\sqrt{b}\sqrt{b}

(\sqrt{a} +\sqrt{b})(\sqrt{a} -\sqrt{b})=a-\sqrt{ab}+\sqrt{ab}-b

(\sqrt{a} +\sqrt{b})(\sqrt{a} -\sqrt{b})=a-b

Hence, this equation is not true.

Thus, the correct option is d) (\sqrt{a} +\sqrt{b})(\sqrt{a} -\sqrt{b})=a+b

Similar questions