Math, asked by 01928373892, 10 months ago

for real numbers , x ,y and z if 9x²+16y²+4z²=108 and 6xy+4yz+3zx= 54 then find the value of x²+y²+z²​

Answers

Answered by IamIronMan0
4

Answer:

Let 3x = a , 4y = b and 2z=c . Our equations become

 {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 108 \\ ab + bc + ca = 2 \times 54 = 108 \\ so \\  {a}^{2}  +  {b}^{2}  +  {c}^{2}  = ab + bc + ca = 108 \\now  \\  \\ {a}^{2}  +  {b}^{2}  +  {c}^{2}   - ab  - bc - ca =0 \\  \\  \frac{ {(a - b)}^{2} +  (b - c) {}^{2} + ( {c - a)}^{2}  }{2}  = 0 \\  \\ which \:  \: is \:  \: only \:  \: possible \:  \: if \:  \:  \\ (a - b) {}^{2}  = (b - c) {}^{2}  =( c - a) {}^{2}  \\ or \\ a = b = c \\ so \:  \: we \:  \: get \\  \\  {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 108 \\  \\  {a}^{2}  =  {b}^{2}  =  {c}^{2}  =  \frac{108}{3}  = 36 \\  \\ so \\  \\  {x}^{2}  +  {y}^{2}  +  {z}^{2}  =  {a}^{2} ( \frac{1}{9}  + \frac{1}{16}  +  \frac{1}{4} ) =  \frac{61}{4}

Similar questions