Physics, asked by saisatvik6161, 10 months ago

For same speed of projection range are equal for angle theta height is h1 and for other is h2 proove that range = root 16 h1 h2

Answers

Answered by TheBrainlyWizard
52

\Large{\sf{\green{Given}}}

• Speed for both cases are equal

• (h₁) height attained by θ projection

• (h₂) height attained by another projection

\Large{\sf{\green{To\: prove}}}

\sf{Range\: (R) = \: \sqrt{16\:h_{1}h_{2}} = \: \: 4\sqrt{h_{1}h{2}}}

\Large{\sf{\green{Solution}}}

Finding Range (R)

\large{\sf{R = \frac{u^{2}sin2\theta}{g}}\: \: \blue{\longrightarrow\: (1)}}\\ \\

Let h₁ and h₂ be the maximum height attained by θ and (90 - θ) projection respectively (Reason is given below)

\large{\sf{h_{1} = \frac{u^{2}sin^{2}\theta}{2g}\: \: \red{\longrightarrow\:(2)}}}\\

\large{\sf{h_{2} = \frac{u^{2}sin^{2}(90 - \theta)}{2g}\: \: \red{\longrightarrow\:(3)}}}\\ \\

Multiplying (2) and (3) :

\sf{\implies\: h_{1} . h_{2} = \frac{u^{2}sin^{2}\theta}{2g} × \frac{u^{2}sin^{2}(90 - \theta)}{2g}}\\

\sf{\implies\: h_{1} . h_{2} = \frac{u^{2}sin^{2}\theta}{2g} × \frac{u^{2}cos^{2} \theta}{2g}}\\

\sf{\implies\: h_{1} . h_{2} = \frac{u^{4}sin^{2}\theta cos^{2} \theta}{4g^{2}}}\\

Multiplying denominator & numerator by 4

\sf{\implies\: h_{1} . h_{2} = \frac{4 × u^{4}sin^{2}\theta cos^{2} \theta}{16g^{2}}}\\

\sf{\implies\: h_{1} . h_{2} = \frac{ ( u^{2}2sin\theta cos\theta)^{2}}{16g^{2}}}\\

\sf{\implies\: h_{1} . h_{2} = \frac{ (u^{2}sin2\theta)^{2}}{16g^{2}}}\\

\sf{\implies\: h_{1} . h_{2} = \frac{1}{16} × \frac{ (u^{2}sin2\theta)^{2}}{g^{2}}}\\

\sf{\implies\: h_{1} . h_{2} = \frac{1}{16} × \left(\frac{ u^{2}sin2\theta}{g}\right)^{2}}\\

\sf{\implies\: h_{1} . h_{2} = \frac{ R^{2}}{16}}\\

\sf{\implies\: R^{2} = 16\:h_{1}.h_{2}}\\

\sf{\implies\: R = \sqrt{16\:h_{1}.h_{2}}}\\

\boxed{\large{\sf{\green{\therefore\: R = 4 \sqrt{\:h_{1}.h_{2}}}}}}\\

Hence proved

______________________________________________

Note:

\large{\sf{\purple{\: R = \frac{u^{2}sin2\theta}{g}}}}\\

\large{\sf{\purple{\: h_{max} = \frac{u^{2}sin^{2}\theta}{2g}}}}\\

• Range is equal for angle θ and (90 - θ)

• 2sinAcosA = sin2A

Similar questions