Math, asked by finaticak, 1 month ago

for Solving the equation 3x-2y = 6 s 2x +y=11 by chamer's rule find the value of D​

Answers

Answered by anjugedam1580
2

Answer:

3x-2y = 6

2x+y = 11

for solving these eq6 by cramers rule determinant of matrix forces by coeff of x and y is not zero.

now determinant = >

for equation of type

a1x+b1y+c1 = 0 and a2x+b2y+c2 = 0

\begin{gathered} \binom{c1 \: \: \: a1}{c2 \: \: a2} \\ = c1a2 - c2a1\end{gathered}

(

c2a2

c1a1

)

=c1a2−c2a1

on putting values

[(-6) ×2] - [(-11) ×3]

=>21

Answered by MathHacker001
8

\large\bf\underline\red{Answer \:  :-}

Given equation :

3x-2y = 6

2x +y=11

By Cramer's Rule

Finding D

\small\sf\longrightarrow{D = \begin{gathered} \begin{gathered}  \begin{gathered}\begin{gathered}\left|\begin{array}{cc} \sf 3 &amp;  \sf - 2 \\  \sf2 &amp;  \sf1 \end{array}\right| </p><p> \end{gathered} \end{gathered} \end{gathered}\end{gathered} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \small \sf \longrightarrow{D = ( 3 \times 1) - (2 \times  - 2)} \\  \\  \small \sf \longrightarrow{D = 3 - ( - 4) = 3 + 4}  \: \\  \\  \small \bf \longrightarrow \red{D = 7} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

D = 7

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions