Math, asked by shuklakushagra99, 10 months ago

For the ellipse x^2/5 + y^2/4 = 1
What will be the eccentricity ?

Plz help me.

Answers

Answered by BrainlyConqueror0901
52

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Eccentricity=\frac{1}{\sqrt{5}}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies   Eqn \: of \: ellipse \:  \frac{ {x}^{2} }{5}  +  \frac{ {y}^{2} }{4}  = 1 \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Eccentricity = ?

• According to given question :

 \tt: \implies   \frac{ {x}^{2} }{5}  +  \frac{ {y}^{2} }{4}  = 1 \\  \\  \tt:  \implies  \frac{ {x}^{2} }{ (\sqrt{5})^{2} }  +  \frac{ {y}^{2} }{ ({2})^{2} }  = 1 \\  \\  \text{So, \: it \: is \: in \: the \: form \: of} \\  \tt:  \implies  \frac{ {x}^{2} }{ {a}^{2} }  +   \frac{ {y}^{2} }{ {b}^{2} }  = 1 \\  \\  \bold{Where : } \\  \tt \circ \: a^{2} =  5\\  \\  \tt \circ \: b^{2}  = 4 \\  \\   \bold{As \: we \: know \: that} \\  \tt:  \implies  {b}^{2}  =  {a}^{2} (1 -  {e}^{2} ) \\  \\  \tt:  \implies  4 = 5(1 -  {e}^{2} ) \\  \\  \tt:  \implies  \frac{4}{5}  = 1 -  {e}^{2}  \\  \\  \tt:  \implies  {e}^{2}  =1 -   \frac{4}{5}  \\  \\  \tt:  \implies  {e}^{2} =   \frac{1}{5}  \\  \\  \tt:  \implies e =  \sqrt{ \frac{1}{5} }  \\  \\  \green{\tt:  \implies e =   \frac{1}{ \sqrt{5} } }

Attachments:
Answered by Abhishek474241
36

Given

An ellipse

\frac{x^2}{5}+\frac{y^2}{4}=1

To Find

Eccentricity

Solution

From given

\frac{x^2}{5}+\frac{y^2}{4}=1

  1. a²=5
  2. b²=4

\boxed{\boxed{e^2=1-\frac{b^2}{a^2}}}

Putting the values of 1 and 2 in E formula

\boxed{\boxed{e^2=1-\frac{b^2}{a^2}}}

Step by step calculation

=>e^2=1-\frac{b^2}{a^2}

=>e^2=1-\frac{4}{5}

=>e^2=\frac{5-4}{5}

=>e^2=\frac{1}{5}

=>e=\sf{\dfrac{1}{\sqrt{5}}}

Hence,the eccentricity is \sf{\dfrac{1}{\sqrt{5}}}

Similar questions