Math, asked by riturk03, 11 months ago

for the function y=x√x find value of x for which rate of change of y with respect to x is 6

Answers

Answered by MaheswariS
24

Answer:

(\frac{dy}{dx})_{x=6}=\frac{3}{2}\sqrt{6}

Step-by-step explanation:

Formula used:

\frac{d(x^n)}{dx}=n\:x^{n-1}

Given:

y=x\sqrt{x}

y=x^{\frac{3}{2}}

Differentiate with respect to 'x'

\frac{dy}{dx}=\frac{3}{2}x^{\frac{1}{2}}

\frac{dy}{dx}=\frac{3}{2}x^{\frac{1}{2}}

\frac{dy}{dx}=\frac{3}{2}\sqrt{x}

(\frac{dy}{dx})_{x=6}=\frac{3}{2}\sqrt{6}

Answered by itsps06
20

16

Step-by-step explanation:

y=x√x or x^3/2

dy/dx = 6 (given)

dy/dx= 3/2*√x

6=3/2×√x

√x= 4

x=16

Attachments:
Similar questions