Math, asked by garima0207, 1 year ago

for the given progression find the 9th term 2,6,8,54...​

Answers

Answered by RvChaudharY50
120

Correct Question :--- Find the 9th term of progression :-- 2,6,18,54 ____________

Concept used :---

\bigstar\underline{\red{\mathbb{AP\:\green{SERIES}}}}\bigstar

If in an A.P. series "a" be the first term and "d" be the common difference then ,

(1) The n'th term is given by the formula .

\longrightarrow \red{\boxed{\sf a_n=a+(n-1)d}}

(2)Sum of n number of terms ,

\longrightarrow\green{\boxed{\sf S_n=\frac{n[2a+(n-1)d]}{2}}}

━━━━━━━━━━━━━━━━━━━━━━━

\bigstar\underline{\red{\mathbb{GP\:\pink{SERIES}}}}\bigstar

If in an G.P. series "a" be the first term and "r" be the common ratio then ,

(1) The n'th term is given by the formula .

\longrightarrow\pink{\boxed{\tt \: a_n=at{}^{n-1}}}

(2)Sum of n number of terms ,

\longrightarrow \purple{\boxed{\rm \: S_n=\frac{n[r{}^{n}-1]}{r-1}}}

━━━━━━━━━━━━━━━━━━━━━━━

\underline {\underline{\LARGE{{\bf{\color{lime}{S}}}{\mathfrak{o}}{\mathfrak{\orange{l}}}{\mathfrak{\color{aqua}{u}}}{\mathfrak{\pink{t}}}{\mathfrak{\purple{i}}}{\mathfrak{\color{navy}{o}}}{\mathfrak{\red{n}}}}}} :

  \green{\tt \: Given \:  Series  \: is  = 2 \: 6 \: 18 \: 54 -  -  -}  \\  \\ \red\longmapsto\:\rm \: first \: term(a) = 2 \\  \\ \red\longmapsto\:\rm \: common \: ratio(r) =  \frac{6}{2}  = 3 \\  \\   \blue{\bf \: putting \: values \: now} \:  \\  \\  \bf \: T_9 \:  = a \times r^{9 - 1} \\  \\  \red\longmapsto\:\rm \: T_9 = 2 \times  {3}^{8} \\  \\ \red\longmapsto\:   \pink{\boxed{\large\rm \red{T_9}  \green=  \purple{13122}}}

___________________________

  \red{\textbf{Hence, values of 9th Term of GP is 13122..}}

Similar questions