Chemistry, asked by yashsehgal251103, 1 month ago

For the ideal solution formed by two liquids A and B which of the
following is correct?
(Here XA & Xg represent mole fraction of solvent & solute in
liquid phase respectively and YA & Yp represents mole fraction of
solvent & solute in vapour phase respectively. Ptotal is total
vapour pressure of solution).​

Attachments:

Answers

Answered by shadowsabers03
11

Let \small\text{$\tt {P^0_A}$} and \small\text{$\tt {P^0_B}$} be vapour pressure of pure liquids A and B respectively.

Then total vapour pressure of the solution is given by,

\small\text{$\longrightarrow\tt{P_{Total}=P^0_A\,X_A+P^0_B\,X_B\quad\quad\dots(1)}$}

Taking \small\text{$\tt{X_B=1-X_A}$} in (1),

\small\text{$\longrightarrow\tt{P_{Total}=P^0_A\,X_A+P^0_B\,(1-X_A)}$}

\small\text{$\longrightarrow\tt{P_{Total}=P^0_A\,X_A+P^0_B-P^0_B\,X_A}$}

\small\text{$\longrightarrow\tt{P_{Total}=(P^0_A-P^0_B)\,X_A+P^0_B\quad\quad\dots(2)}$}

This equation is in the form \small\text{$\tt {y=mx+c}$} where \small\text{$\tt {y=P_{Total}}$} and \small\text{$\tt {x=X_A.}$}

Hence plot of \small\text{$\tt {P_{Total}}$} versus \small\text{$\tt {X_A}$} is linear.

Taking \small\text{$\tt{X_A=1-X_B}$} in (1),

\small\text{$\longrightarrow\tt{P_{Total}=P^0_A\,(1-X_B)+P^0_B\,X_B}$}

\small\text{$\longrightarrow\tt{P_{Total}=P^0_A-P^0_A\,X_B+P^0_BX_B}$}

\small\text{$\longrightarrow\tt{P_{Total}=(P^0_B-P^0_A)\,X_B+P^0_A}$}

This equation is in the form \small\text{$\tt {y=mx+c}$} where \small\text{$\tt {y=P_{Total}}$} and \small\text{$\tt {x=X_B.}$}

Hence plot of \small\text{$\tt {P_{Total}}$} versus \small\text{$\tt {X_B}$} is linear.

Mole fraction of A in vapour phase is given by,

\small\text{$\longrightarrow\tt{Y_A=\dfrac{P^0_A\,X_A}{P_{Total}}\quad\quad\dots(3)}$}

But from (2),

\small\text{$\longrightarrow\tt{X_A=\dfrac{P_{Total}-P^0_B}{P^0_A-P^0_B}}$}

Then (3) becomes,

\small\text{$\longrightarrow\tt{Y_A=\dfrac{P^0_A}{P_{Total}}\left(\dfrac{P_{Total}-P^0_B}{P^0_A-P^0_B}\right)}$}

\small\text{$\longrightarrow\tt{Y_A=\dfrac{P^0_A}{P^0_A-P^0_B}\left(1-\dfrac{P^0_B}{P_{Total}}\right)}$}

\small\text{$\longrightarrow\tt{Y_A=-\dfrac{P^0_A\,P^0_B}{P_{Total}(P^0_A-P^0_B)}+\dfrac{P^0_A}{P^0_A-P^0_B}\quad\quad\dots(4)}$}

\small\text{$\longrightarrow\tt{\dfrac{P^0_A\,P^0_B}{P_{Total}(P^0_A-P^0_B)}=-Y_A+\dfrac{P^0_A}{P^0_A-P^0_B}}$}

\small\text{$\longrightarrow\tt{\dfrac{P^0_A\,P^0_B}{P_{Total}(P^0_A-P^0_B)}=\dfrac{P^0_A-Y_A(P^0_A-P^0_B)}{P^0_A-P^0_B}}$}

\small\text{$\longrightarrow\tt{P_{Total}=\dfrac{P^0_A\,P^0_B}{(P^0_B-P^0_A)Y_A+P^0_A}}$}

This equation is in the form \small\text{$\tt {y=\dfrac{m}{ax+b}}$} where \small\text{$\tt {y=P_{Total}}$} and \small\text{$\tt {x=Y_A.}$}

Hence plot of \small\text{$\tt {P_{Total}}$} versus \small\text{$\tt {Y_A}$} is non - linear.

From (4), since \small\text{$\displaystyle\tt{Y_A=1-Y_B,}$}

\small\text{$\longrightarrow\tt{1-Y_B=-\dfrac{P^0_A\,P^0_B}{P_{Total}(P^0_A-P^0_B)}+\dfrac{P^0_A}{P^0_A-P^0_B}}$}

\small\text{$\longrightarrow\tt{Y_B=\dfrac{P^0_A\,P^0_B}{P_{Total}(P^0_A-P^0_B)}+1-\dfrac{P^0_A}{P^0_A-P^0_B}}$}

\small\text{$\longrightarrow\tt{Y_B=\dfrac{P^0_A\,P^0_B}{P_{Total}(P^0_A-P^0_B)}-\dfrac{P^0_B}{P^0_A-P^0_B}}$}

\small\text{$\longrightarrow\tt{\dfrac{P^0_A\,P^0_B}{P_{Total}(P^0_A-P^0_B)}=Y_B+\dfrac{P^0_B}{P^0_A-P^0_B}}$}

\small\text{$\longrightarrow\tt{\dfrac{P^0_A\,P^0_B}{P_{Total}(P^0_A-P^0_B)}=\dfrac{(P^0_A-P^0_B)Y_B+P^0_B}{P^0_A-P^0_B}}$}

\small\text{$\longrightarrow\tt{P_{Total}=\dfrac{P^0_AP^0_B}{(P^0_A-P^0_B)Y_B+P^0_B}}$}

This equation is in the form \small\text{$\tt {y=\dfrac{m}{ax+b}}$} where \small\text{$\tt {y=P_{Total}}$} and \small\text{$\tt {x=Y_B.}$}

Hence plot of \small\text{$\tt {P_{Total}}$} versus \small\text{$\tt {Y_B}$} is non - linear.

Hence 3rd option is correct.

Answered by siddhrajsinhvaghela1
0

Answer:

it is plot of Ptotal versus Xb is non linear

so, correct option is 4 th option

Similar questions