Math, asked by chughp513, 7 hours ago

For the matrix
A= [0. 1. 0. 0
0. 0. 1. 0
0. 0. 0. 1
1. 0. 0. 0]
What is the smallest positive integer k such that Ak = 1​

Answers

Answered by shadowsabers03
6

Correct Question:-

For the matrix \small\text{$A=\left[\begin{array}{cccc}0&1&0&0\\0&0&1&0\\0&0&0&1\\1&0&0&0\end{array}\right],$} findthe smallest positive integer k such that \small\text{$A^k=I$} where I is 4×4 identity matrix.

Solution:-

We need to write A as \small\text{$A=PDP^{-1}$} where,

  • P is matrix consisting of eigenvectors of A in each column.
  • D is diagonal matrix with eigenvalues of A as entries.

The eigenvalues λ are given by,

\small\text{$\longrightarrow |A-\lambda I|=0$}

\small\text{$\longrightarrow \left|\begin{array}{cccc}-\lambda&1&0&0\\0&-\lambda&1&0\\0&0&-\lambda&1\\1&0&0&-\lambda\end{array}\right|=0$}

Expanding along R₁,

\small\text{$\longrightarrow-\lambda\left|\begin{array}{ccc}-\lambda&1&1\\0&-\lambda&1\\0&0&-\lambda\end{array}\right|-\left|\begin{array}{ccc}0&1&0\\0&-\lambda&1\\1&0&-\lambda\end{array}\right|=0$}

Expanding along C₁ in each determinant,

\small\text{$\longrightarrow-\lambda\left[-\lambda\left|\begin{array}{cc}-\lambda&1\\0&-\lambda\end{array}\right|\right]-\left[\left|\begin{array}{cc}1&0\\-\lambda&1\end{array}\right|\right]=0$}

\small\text{$\longrightarrow\lambda^4-1=0$}

\small\text{$\Longrightarrow\lambda=e^{i\frac{2\pi}{4}r}=e^{i\frac{\pi}{2}r},\quad r\in\mathbb{N},\quad 0\leq r<4$}

[Recall that the 'n' solutions of the equation xⁿ - a = 0 are given by \small\text{$x=a^{\frac{1}{n}}e^{-\frac{2\pi}{n}r}$} where r ∈ N and 0 ≤ r < n.]

\small\text{$\Longrightarrow\lambda\in\left\{e^{i(0)},\ e^{i\frac{\pi}{2}},\ e^{i\pi},\ e^{i\frac{3\pi}{2}}\right\}$}

\small\text{$\longrightarrow\lambda\in\left\{i,\ -1,\ -i,\ 1\right\}$}

Here each λ has AM = 1. Then,

  • \small\text{$D=\left[\begin{array}{cccc}i&amp;0&amp;0&amp;0\\0&amp;-1&amp;0&amp;0\\0&amp;0&amp;-i&amp;0\\0&amp;0&amp;0&amp;1\end{array}\right]$}

Let us find eigenvector X for each λ. Since AM of each λ is 1, it is enough to solve and check in general,

\small\text{$\longrightarrow(A-\lambda I)X=O$}

\small\text{$\longrightarrow\left[\begin{array}{cccc}-\lambda&amp;1&amp;0&amp;0\\0&amp;-\lambda&amp;1&amp;0\\0&amp;0&amp;-\lambda&amp;1\\1&amp;0&amp;0&amp;-\lambda\end{array}\right]\left[\begin{array}{c}a\\b\\c\\d\end{array}\right]=O$}

\small\text{$\longrightarrow\left[\begin{array}{c}-\lambda a+b\\-\lambda b+c\\-\lambda c+d\\-\lambda d+a\end{array}\right]=O$}

Equating each entry we get,

\small\text{$\longrightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{1}{\lambda}$}

\small\text{$\Longrightarrow a:b:c:d=\lambda:\lambda^2:\lambda^3:1$}

Thus,

\small\text{$\longrightarrow X=\left[\begin{array}{c}a\\b\\c\\d\end{array}\right]=\left[\begin{array}{c}\lambda\\\lambda^2\\\lambda^3\\1\end{array}\right]$}

Then,

\small\text{$\longrightarrow\big(X(i),\ X(-1),\ X(-i),\ X(1)\big)=\left(\left[\begin{array}{c}i\\-1\\-i\\1\end{array}\right],\ \left[\begin{array}{c}-1\\1\\-1\\1\end{array}\right],\ \left[\begin{array}{c}-i\\-1\\i\\1\end{array}\right],\ \left[\begin{array}{c}1\\1\\1\\1\end{array}\right]\right)$}

We see each λ has GM = 1. Hence A is diagonalizable.

Now,

  • \small\text{$P=\left[\begin{array}{cccc}i&amp;-1&amp;-i&amp;1\\-1&amp;1&amp;-1&amp;1\\-i&amp;-1&amp;i&amp;1\\1&amp;1&amp;1&amp;1\end{array}\right]$}

P⁻¹ is found out in the figure.

  • \small\text{$P^{-1}=\dfrac{1}{4}\left[\begin{array}{cccc}-i&amp;-1&amp;i&amp;1\\-1&amp;1&amp;-1&amp;1\\i&amp;-1&amp;-i&amp;1\\1&amp;1&amp;1&amp;1\end{array}\right]$}

Now,

\small\text{$\longrightarrow A=PDP^{-1}$}

\small\text{$\longrightarrow A^k=PD^kP^{-1}=I$}

\small\text{$\longrightarrow\dfrac{1}{4}\left[\begin{array}{cccc}i&amp;-1&amp;-i&amp;1\\-1&amp;1&amp;-1&amp;1\\-i&amp;-1&amp;i&amp;1\\1&amp;1&amp;1&amp;1\end{array}\right]\left[\begin{array}{cccc}i^k&amp;0&amp;0&amp;0\\0&amp;(-1)^k&amp;0&amp;0\\0&amp;0&amp;(-i)^k&amp;0\\0&amp;0&amp;0&amp;1\end{array}\right]\left[\begin{array}{cccc}-i&amp;-1&amp;i&amp;1\\-1&amp;1&amp;-1&amp;1\\i&amp;-1&amp;-i&amp;1\\1&amp;1&amp;1&amp;1\end{array}\right]=I$}

\small\text{$\longrightarrow\dfrac{1}{4}\left[\begin{array}{cccc}i^{k+1}&amp;(-1)^{k+1}&amp;(-i)^{k+1}&amp;1\\-i^k&amp;(-1)^k&amp;-(-i)^k&amp;1\\-i^{k+1}&amp;(-1)^{k+1}&amp;i(-i)^k&amp;1\\i^k&amp;(-1)^k&amp;(-i)^k&amp;1\end{array}\right]\left[\begin{array}{cccc}-i&amp;-1&amp;i&amp;1\\-1&amp;1&amp;-1&amp;1\\i&amp;-1&amp;-i&amp;1\\1&amp;1&amp;1&amp;1\end{array}\right]=I$}

The product equals I whose element in 4th row and 4th column equals 1. On considering 4th row of first matrix and 4th column of second matrix in LHS, we get,

\small\text{$\longrightarrow\dfrac{1}{4}[i^k+(-1)^k+(-i)^k+1]=1$}

\small\text{$\longrightarrow i^k+(-1)^k+(-i)^k=3$}

If k is odd,

\small\text{$\longrightarrow i^k-1-i^k=-1=3$}

This is wrong so k must be even.

\small\text{$\longrightarrow i^k+1+i^k=3,\quad 2i^k=2,\quad i^k=1$}

\small\text{$\Longrightarrow k=4m,\ m\in\mathbb{Z}$}

If k is the smallest possible positive integer,

\small\text{$\longrightarrow\underline{\underline{k=4}}$}

Attachments:
Similar questions