Math, asked by subaj1584, 1 year ago

For the parabola y2 =4ax the length of chord passing through the vertex and inclined to x axis at angle @ is

Answers

Answered by suchindraraut17
1

Length of chord =  \frac{4acos\theta}{sin^2\theta}

Step-by-step explanation:

Given,Equation of parabola,y^2 = 4ax..........................(1)

Vertex = (0,0)

m = tan\theta

Hence equation of chord, y = (tan\theta)x

Put this value in equation(1)(tan^2\theta)x^2 = 4ax

x = \frac{4a}{tan^2\theta}

y = \frac{4a}{tan\theta}

Length of chord = \sqrt{(\frac{4a}{tan2t})^2 + (\frac{4a}{tan\theta})^2}                                      

                           =\frac{4a}{tan^2\theta}\sqrt{1 + tan^2\theta}

                           =\frac{4acos^2\theta{sin^2\theta}\times\frac{1{cot\theta}

                           = \frac{4acos\theta}{sin^2\theta}

Hence,Length of chord =  \frac{4acos\theta}{sin^2\theta}

Answered by TanikaWaddle
0

\theta  = \frac{4a\cos\theta}{\sin^2\theta}

Step-by-step explanation:

given parabola = y² = 4ax

let the length of the chord be L  where chord cut the parabola is

x_1=L \cos\theta\\\\y_1=L\sin\theta

equation of the parabola

y^2= 4ax

this point will satisfy the equation of the parabola

(L\sin\theta)^2 = 4a (L\cos\theta)\\\\L = \frac{4a\cos\theta}{\sin^2\theta}

hence , The value is \theta  = \frac{4a\cos\theta}{\sin^2\theta}

#Learn more:

If the chord y=mx+c subtends a right angle at the vertex of the parabola y²=4ax, then the value of c is

https://brainly.in/question/5896276

Similar questions