for two vectors a and b if vector R=vector a+vector b and vector S=vector a-vector b if 2|vectorR|=|vector S|,when vector R is perpendicular to vector a,then-
Answers
Answered by
1
Given info : for two vector a and b if R = a + b and S = a - b if 2|R| = |S| and R is perpendicular to a.
solution : let Ф is angle between vectors a and b.
R = a + b
∵ R is perpendicular to a.
∴ R.a = 0
so, R.a = (a + b).a
⇒ 0 = a.a + a.b
⇒ 0 = a² + abcosФ
⇒ cosФ = -a/b ..(1)
given, 2|R| = |S|
⇒ 4|R|² = |S|²
⇒ 4(a² + b² + 2abcosФ) = (a² + b² - 2abcosФ)
⇒ 4(a² + b²-2a²) = (a² + b² + 2a²) [ from eq (1) ]
⇒ 4b² - 4a² = 3a² + b²
⇒ 3b² = 7a²
⇒ √3 b = ± √7 a
therefore the relation between a and b will be √3 b = ± √7 a
Similar questions