Math, asked by ems47, 3 months ago

plzzzzzz help me.....​

Attachments:

Answers

Answered by BrainlyEmpire
25

Given::

BC= 15cm

\rm{sin\ B=\dfrac{4}{5}}

To Find:-

i) Measurement of AB and AC

ii) Measurement of CD and AD, if tan(∠ADC)=1

To Prove:

\longrightarrow\bf{tan^{2}\ B-\dfrac{1}{cos^{2}\ B}=-1}

Solution:-

In ΔABC,

\longrightarrow\rm{cos\ B=\sqrt{1-sin^{2}B}}

\longrightarrow\rm{cos\ B=\sqrt{1-\bigg(\dfrac{4}{5}\bigg)^{2}}}

\longrightarrow\rm{cos\ B=\sqrt{1-\dfrac{16}{25}}}

\longrightarrow\rm{cos\ B=\sqrt{\dfrac{25-16}{25}}}

\longrightarrow\rm{cos\ B=\sqrt{\dfrac{9}{25}}}

\longrightarrow\rm{cos\ B=\dfrac{3}{5}}

Now,

\longrightarrow\rm{cos\ B=\dfrac{BC}{AB}}

\longrightarrow\rm{\dfrac{3}{5}=\dfrac{15}{AB}}

\longrightarrow\rm{AB=\dfrac{15\times5}{3}}

\longrightarrow\rm\green{AB=25\ cm}

Now,

\longrightarrow\rm{sin\ B=\dfrac{AC}{AB}}

\longrightarrow\rm{\dfrac{4}{5}=\dfrac{AC}{25}}

\longrightarrow\rm{\dfrac{4\times25}{5}=AC}

\longrightarrow\rm{AC=\dfrac{4\times25}{5}}

\longrightarrow\rm\green{AC=20\ cm}

━━━━━━━━━━━━━━━━━━━━━

Now, In ΔACD

tan(∠ADC)=1

That means,

∠ADC= 45°

Or

D= 45°

So,

\longrightarrow\rm{tan\ D=\dfrac{AC}{CD}}

\longrightarrow\rm{tan\ 45^{\circ}=\dfrac{20}{CD}}

\longrightarrow\rm{1=\dfrac{20}{CD}}

\longrightarrow\rm\green{CD=20\ cm}

Now,

\longrightarrow\rm{sin\ D=\dfrac{AC}{AD}}

\longrightarrow\rm{sin\ 45^{\circ}=\dfrac{20}{AD}}

\longrightarrow\rm{\dfrac{1}{\sqrt{2}} =\dfrac{20}{AD}}

\longrightarrow\rm\green{AD=20\sqrt{2}\ cm}

━━━━━━━━━━━━━━━━━━━━━

Now, we know that,

\pink{\underline{\boxed{\bf{1+tan^{2}\theta=sec^{2}\theta}}}}

\purple{\underline{\boxed{\bf{sec \theta}=\dfrac{1}{cos\theta}}}}

So, by using above properties

\longrightarrow\rm{1+tan^{2}B=sec^{2}B}

\longrightarrow\rm{tan^{2}B-sec^{2}B=-1}

\longrightarrow\rm{tan^{2}B-\bigg(\dfrac{1}{cosB} \bigg)^{2}=-1}

\longrightarrow\rm{tan^{2}B-\dfrac{1}{cos^{2}B}=-1}

\bigstar\bf\red{Hence\ Proved}

Answered by BabeHeart
8

Answer:

Given:: \\BC= 15cm \\ \rm{sin\ B=\dfrac{4}{5}}sin B=54 \\  \\ To  \: Find:- \\ i) Measurement  \: of  \: AB  \: and  \: AC \\ ii) Measurement \:  of  \: CD \:  and \:  AD,  \: if  \: tan(∠ADC)=1 \\ To  \: Prove: \\  \\\longrightarrow\bf{tan^{2}\ B-\dfrac{1}{cos^{2}\ B}=-1}⟶tan2 B−cos2 B1=−1 \\Solution:-\\In ΔABC, \\ \longrightarrow\rm{cos\ B=\sqrt{1-sin^{2}B}}⟶cos B=1−sin2B \\\longrightarrow\rm{cos\ B=\sqrt{1-\bigg(\dfrac{4}{5}\bigg)^{2}}}⟶cos B=1−(54)2 \\\longrightarrow\rm{cos\ B=\sqrt{1-\dfrac{16}{25}}}⟶cos B=1−2516 \\ \longrightarrow\rm{cos\ B=\sqrt{\dfrac{25-16}{25}}}⟶cos B=2525−16 \\\longrightarrow\rm{cos\B=\sqrt{\dfrac{9}{25}}}⟶cos B=259 \\\longrightarrow\rm{cos\ B=\dfrac{3}{5}}⟶cos B=53\\ Now, \\\longrightarrow\rm{cos\ B=\dfrac{BC}{AB}}⟶cos B=ABBC \\\longrightarrow\rm{\dfrac{3}{5}=\dfrac{15}{AB}}⟶53=AB15 \\\longrightarrow\rm{AB=\dfrac{15\times5}{3}}⟶AB=315×5

Similar questions