For what angle between A and B, |A+B| = | A-B .
Answers
Answer:
A = |A|
B = |B|
|A + B| = √(A2 + B2 + 2ABcosθ)
|A - B| = √(A2 + B2 - 2ABcosθ)
|A + B| = |A - B| ⇒
√(A2 + B2 + 2ABcosθ) = √(A2 + B2 - 2ABcosθ)
Square both sides.
A2 + B2 + 2ABcosθ = A2 + B2 - 2ABcosθ
2ABcosθ = -2ABcosθ
If A ≠ 0 and B ≠ 0, then
cosθ = -cosθ ⇒
cosθ = 0 ⇒ θ = 90°
Given :
| A + B | = | A - B |
To find :
The angle between vector A and B .
Solution :
By vector addition , we know ,
| A + B | = √( A^2 + B^2 + 2 *A*B*Cosθ )
and , | A - B | = √( A^2 + B^2 - 2 *A*B*Cosθ )
now, given ,
| A + B | = | A - B |
=> √( A^2 + B^2 + 2 *A*B*Cosθ ) = √( A^2 + B^2 - 2 *A*B*Cosθ )
squaring both sides ,
=> A^2 + B^2 + 2 *A*B*Cosθ = A^2 + B^2 - 2 *A*B*Cosθ
=> Cosθ = - Cosθ
=> 2 Cosθ = 0
=> Cosθ = 0
=> θ = 90°
The value of the angle between vector A and B is 90° .