for what value of k are the roots of the quadratic equation y^2+k^2=2(k+1)t equal plz ans fastly
Answers
Answered by
85
Here is solution for your question bro...
Y2 + K2 - 2 ( K - 1 ) Y = 0
Y2 - 2( K-1 ) Y + K2 = 0
A = 1, B = -2( K - 1) , C = K2
GIVEN ROOTS ARE EQUAL, THEN B2 - 4AC = 0
{ - 2 ( K - 1 ) } SQUARE - 4 * 1 * K2 = 0
4 ( K2 - 2K + 1) - 4K2 = 0
4 { K2 - 2K + 1 - K2} = 0
4 { 1 - 2K } = 0
I - 2K = 0/4 = 0
1 = 2K
1/2 = K
K=1/2
Y2 + K2 - 2 ( K - 1 ) Y = 0
Y2 - 2( K-1 ) Y + K2 = 0
A = 1, B = -2( K - 1) , C = K2
GIVEN ROOTS ARE EQUAL, THEN B2 - 4AC = 0
{ - 2 ( K - 1 ) } SQUARE - 4 * 1 * K2 = 0
4 ( K2 - 2K + 1) - 4K2 = 0
4 { K2 - 2K + 1 - K2} = 0
4 { 1 - 2K } = 0
I - 2K = 0/4 = 0
1 = 2K
1/2 = K
K=1/2
legends1:
thanks
Answered by
36
Y2 + K2 - 2 ( K - 1 ) Y = 0
Y2 - 2( K-1 ) Y + K2 = 0
A = 1, B = -2( K - 1) , C = K2
GIVEN ROOTS ARE EQUAL, THEN B2 - 4AC = 0
{ - 2 ( K - 1 ) } SQUARE - 4 * 1 * K2 = 0
4 ( K2 - 2K + 1) - 4K2 = 0
4 { K2 - 2K + 1 - K2} = 0
4 { 1 - 2K } = 0
I - 2K = 0/4 = 0
1 = 2K
1/2 = K
K=1/2
Similar questions