Math, asked by mohammadzeeshan0988, 9 months ago

for what value of k is -2 a root of the equation 3 X square + 4 x + 2 K is equal to zero​

Answers

Answered by Anonymous
6

 \large\bf\underline \orange{Given:-}

  • p(x) = 3x² + 4x +2k

 \large\bf\underline \orange{To \: find:-}

  • For what value of k is -2 a root of the equation 3 X square + 4 x + 2 K is equal to zero.

 \huge\bf\underline \green{Solution:-}

Let -2 be a root of the given equation.

  • x = -2

putting value of x in the given equation.

:\implies\rm\:3 {x}^{2}  + 4x + 2k = 0 \\  \\ :\implies\rm\:3 \times ( - 2 {)}^{2}  + 4 \times ( - 2) + 2k = 0 \\  \\ :\implies\rm\:3 \times 4  - 8 + 2k = 0 \\  \\ :\implies\rm\:12 - 8 + 2k \\  \\ :\implies\rm\:4 + 2k = 0 \\  \\ :\implies\rm\:2k =  - 4 \\  \\ :\implies\rm\:k =   \cancel\frac{ - 4}{2}  \\  \\ :\implies\bf\:k =  - 2

If k = -2 then the quadratic equation 3 X square + 4 x + 2 K is equal to zero.

 \large \bf \underline{Verification} :  -

  : \implies \rm \: 3 {x}^{2}  + 4x + 2k \\  \\   : \implies \rm \: 3 {( - 2)}^{2}  + 4( - 2) + 2( - 2) \\  \\   : \implies \rm \: 12 - 8 - 4 \\  \\   : \implies \rm \: 12 - 12 \\  \\   : \implies \rm \: 0

 \rm \: hence \bf \underline{  \: Verified \:  \: }

Answered by sethrollins13
3

✯✯ QUESTION ✯✯

For what value of k is -2 a root of the equation {3x}^{2} + 4x + 2K = 0

━━━━━━━━━━━━━━━━━━━━

✰✰ ANSWER ✰✰

\longmapsto\tt{{3x}^{2} + 4x + 2K = 0}

Putting x = -2 : -

\longmapsto\tt{{3(-2)}^{2}+4(-2)+2k=0}

\longmapsto\tt{3(4)-8+2k=0}

\longmapsto\tt{12-8+2k=0}

\longmapsto\tt{12-8=-2k}

\longmapsto\tt{4=-2k}

\longmapsto\tt{k=\cancel\dfrac{4}{-2}}

\red\longmapsto\:\large\underline{\boxed{\bf\green{k}\orange{=}\purple{-2}}}

So , The value of k is -2 ..

_______________________

VERIFICATION : -

Putting k = -2 : -

\longmapsto\tt{{3x}^{2} + 4x + 2K = 0}

\longmapsto\tt{{3(-2)}^{2}+4(-2)+2(-2)=0}

\longmapsto\tt{3(4)-8-4=0}

\longmapsto\tt{12-8-4=0}

\longmapsto\tt{4-4=0}

\purple\longmapsto\:\large\underline{\boxed{\bf\blue{0}\green{=}\red{0}}}

HENCE VERIFIED

Similar questions